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INTRODUCTION AND SPECIFIC AIMS 

Until recent times in Sanitary Engineering, the fluidization 

process found its application only in backwashing of granular filters. 

Backwashing of granular filters is the usual way to clean the filters 

to remove the solids accumulated in the pores of the filter during the 

filtration process. Fluidized beds are now being used in denitrification 

and some other wastewater treatment processes. The advantages in 

using fluidized bed reactors for those processes in wastewater treatment 

is that, 

1. greater surface area for growth per unit reactor volume 

2. smaller head loss 

3. no danger of clogging. 

This study does not deal with the treatment aspect of fluidized 

beds, but the void ratio at which the fluidized bed should be operated 

for maximum efficiency is crucial. The mass, momentum and heat 

transfer rates in a fluidized bed reach a maximum value at a optimum 

porosity ratio which is usually near 0.7. Even for backwashing of 

granular filters the maximum shear force on the grains occur at a 

optimum porosity around 0.7. There are several mathematical models 

available to predict the velocity-voidage relationship of spherical 

particles. However, most of the media used in fluidized beds are not 

spherical. Very few models are available to predict the velocity-

voidage relation during fluidization of non-spherical materials. Some 

of these models are specific for the materials used by the investigator. 
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Some of the empirical models, because of the limited data used 

in deriving a particular model, have given rise to less than 

satisfactory or sometimes unsatisfactory correlations. One of the 

objectives of this study was to gather data reported by several in­

vestigators and attempt to formulate a prediction model encompassing 

most of those data. The use of a large data set is expected to eliminate 

to some extent, the possibility of reaching any erroneous conclusions. 

From the principles of similitude,it can be shown that a model 

valid for a system of spherical particles is rigorously valid for a 

system of non-spherical particles only if the latter system is 

dynamically and geometrically similar to that of the spheres. Thus, 

the characteristic length parameter or equivalent diameter of a non-

spherical particle must be related to the diameter of a similarly moving 

spherical particle by a suitable scale factor, usually termed a shape 

factor. Four different shape parameters are tried in this work. They 

are sphericity ($), Dynamic Shape Factor (DSF), hydraulically 

equivalent diameter shape factor (0), and Heywood's volume coefficient 

(Z) . 

In general, the specific aims of this study are to: 

1. Develop a model to predict velocity-voidage relationships 

during liquid fluidization using the relationship between a voidage 

function and modified Reynolds number. The voidage function is 

similar to packed bed friction factor. The advantage of using such a 

prediction equation is that the terminal settling velocity of the 

particle is not required. 
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2. Evaluate how different shape factors perform for predicting 

velocity-voidage relationship during liquid fluidization of non-

spherical particles. 

3. Measure sphericity of angular material by air permeability 

measurements and compare the results with values obtained from fixed 

bed water permeability data. 

4. Check the adequacy of the Cleasby and Fan model (32) for 

the data gathered from different sources and the experiments conducted 

herein, and possibly improve it by using a larger data set. 

5. Check whether the Garside and Al-Dibouni logistic model (54) 

for predicting.the velocity-voidage relationship for spherical particles 

could be extended to non-spherical particles. 

6. Check whether Beranek and Klumpar method (19) of correlating 

fluid izat ion data of non-spherical particles is satisfactory. 
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REVIEW OF LITERATURE 

General 

Fluidization, which had its beginning in the oil industry, is now 

being successfully employed in many and quite unrelated fields due to 

its many inherent advantages. The discipline of Chemical Engineering, 

within the last three decades, has built a large reservoir of literature 

on many aspects of fluidization. A newcomer to this area is greatly 

benefited by these early works. 

Fluidization spans the region between the flow through packed bed 

and discrete particle settling. Any attempt to study fluidized beds is 

either based on the flow through a packed bed (inner problem) or on dis­

crete particle settling (outer problem). Therefore, it is reasonable to 

expect the fluidized systems behavior to be influenced by the properties 

of flow through packed beds and by the behavior of discrete particle 

settling. 

The Motion of a Single Particle in Fluids 

The literature dealing with the motion of particles in fluids or 

of fluids past particles contain a number of intriguingly detailed 

analyses of boundary-layer theory in laminar and turbulent flow; wakes ; 

vortices; skin friction; profile drag; mean free path; and terminal and 

pick-up velocities. Each has its region of major significance, and inter­

relations with commonly observed process phenomenon are continuously 

being sought to strengthen the fundamental approach to design problems. 
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The analysis of single particle dynamics lends itself quite well to 

theoretical as well as experimental treatment and thus offers a firm 

reference point for the study of more complex multi-particle systems. 

Drag force 

The cause of the drag force on a particle moving in fluid can be 

explained using the principles of both laminar and turbulent flow. 

Laminar flow Laminar flow is a result of the fluid property, 

viscosity, which may be defined as that property of a liquid or gas 

which gives rise to an internal stress opposing deformation of the fluid 

during flow. Viscosity may also be defined as the ratio of the gradient 

of momentum flux to the rate of diffusion of momentum per unit area in 

the direction of the gradient. Any relative motion between a particle 

and the fluid causes internal viscous stress in the fluid medium and 

produces a deformation of fluid adjacent to the particle. Drag on the 

particle is a result of transfer of momentum by molecular diffusion 

from the moving particle to the fluid. 

Turbulent flow The distinction between laminar and turbulent 

flow can be made by considering the difference between the molecular dif­

fusion of momentum as compared to turbulent diffusion of momentum. The 

diffusion by molecular action is sufficiently slow that its effect may 

be felt over a widespread region. Turbulent diffusion, however, is a 

result of the gradient of momentum flux being so great that the flow 

becomes unorderly and turbulent mixing results. With turbulent 

diffusion, finite masses of fluid are moving in somewhat random fashion 
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through the fluid and the mixing process is much more rapid and intense. 

These phenomena are involved to varying extents in the different 

types of drag experienced by falling particles. 

One of the important variables associated with drag is the Reynolds 

number which is the ratio of inertia forces to the viscous forces in­

volved in the flow, and may be used as a criterion for determining the 

type of drag which exist on a falling particle. 

Cause of drag The drag forces on a particle are a result 

either one or both of: (1) The shear along the boundary of the 

particle in the direction of motion. This is called surface drag. 

(2) The pressure difference between the upstream and downstream side 

of the particle. This is called the pressure drag. 

The drag resulting from shear along the boundary in the direction 

of motion is of secondary importance except for small particles with low 

particle Reynolds numbers. 

Discussion of vs. Re^^ relationship 

The drag on the particle can be classified as one or a combination 

of two different types of drag. 

1. Deformation drag which is a combination of surface drag and 

pressure drag. 

2. Form drag which is entirely due to pressure drag. 

Deformation drag is principally the result of viscous forces and 

is characterized by a flow pattern where the deformation of the fluid 

laminae is widespread. Form drag results from inertial forces and is 
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characterized by a flow pattern in which there is a separation. The 

relative importance of these two types of drag depends on the particle 

Reynolds number. 

Low particle Reynolds numbers At low particle Reynolds 

numbers (for spheres, Re^^^ < 0.2, the Reynolds number based on the 

settling velocity of the particle in an infinite fluid) -the effects 

of the inertial forces caused by the motion of the particle may be 

ignored and the drag on the body is exclusively one of deformation, 

caused by viscous stress. Deformation drag may be divided further as 

a combination of surface drag due to boundary shear and pressure drag 

due to the shape of the projected area. The motion in this range of 

particle Reynolds numbers is characterized by a widespread distortion 

of the basic flow pattern and is defined mathematically by Stoke's Law 

for spheres. Theoretically, it can be shown one-third of the drag on a 

sphere is due to pressure difference and two-thirds is due to boxmdary 

shear. Furthermore, it can be shown that in the direction of motion 

the sum of the shear and pressure difference is the same at all points^-of 

the body. For a thin cylindrical disc falling flat face down, however, the 

viscous drag is entirely due to the pressure difference, since it has no 

boundary in the direction of motion to produce shear stress. 

Intermediate Reynolds numbers As the Reynolds number is 

increased to the range of 0.2 <Re^^ < 1000, the viscous flow pattern 

is disrupted and the inert ial forces gradually assume greater im­

portance. The region of viscous flow, though still present, is confined 
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to a relatively thin layer at the surface of the particle known as the 

boundary layer. Outside the boundary layer the flow is laminar but the 

inertial forces predominate. The shape of the particle determines to a 

large extent the path taken by the fluids as it flows about the particle, 

hence determines the radial and tangential accelerations necessary for 

the fluid to travel this path. 

As a result of the instability of the laminar flow and increased 

importance of the inertial forces, a zone of separation is formed down­

stream side of the particle as shown in Figure 1. This separation has a 

poorly defined appearance at Re^^ = 3 but gradually takes on a more 

clearly defined appearance as the Reynolds number is increased, until at 

Re^ = 20 the separation zone has a well-defined vortex pattern down­

stream from the particle. 

Separation occurs at the point where the flow is expanding (stream^ 

lines are spreading) and the local velocity in the boundary layer be­

comes zero. Any further expansion of the boundary layer causes flow 

near the boundary layer in the reverse direction to the main stream flow. 

The point of separation may occur at any position along the boundary of 

the particle (as in the case of a sphere) or the point of separation may 

be fixed always by a sudden change in curvature of the boundary of the 

particle (as in the case of a disk). 

Thus in the intermediate range of Reynolds number,the type of drag 

gradually changes from about half surface drag and half pressure drag 

(Re^oo ~ 0.5) to almost exclusively pressure drag (Re^^o ~ 1000). 
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Figure 1. Flow of fluid past a sphere with separation (95) 
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High Reynolds numbers As the Reynolds number is increased 

further (Re^^g > 1000), the influence of viscosity becomes of less and 

less importance until around Re^^ = 2 x 10^ for spheres and Re^ = 5000 

for disks, the flow pattern in general and the drag in particular becomes 

independent of Reynolds number. Throughout this range the separation is 

well-defined, but the point of its beginning upstream, and hence its 

size varies with the nature and extent of the viscous sublayer 

surrounding the particle upstream from the point of separation. This 

viscous sublayer becomes a turbulent sublayer at about Re^^ = 200,000 

for smooth spheres and for disks at about Re^^ = 5000. The turbulent 

boundary layer is more stable than the laminar boundary layer and there­

fore, the separation point is delayed. This in turn produces smaller 

wake region and therefore the drag coefficient suddenly decreases. 

Figure 2 shows the curve of drag coefficient versus Reynolds number 

(Re^^ = pu^gg d/y) based on experimental measurements of the terminal 

velocities of spheres falling under gravity in an expanse of stagnant 

fluid. This curve is called the standard drag curve for spheres. If a 

sphere is falling in a cloud of other spheres or in a container, the 

drag coefficient is higher; the correction may be significant even when 

cloud has a voidage of as high as 99 percent or when a sphere has a 

diameter as little as 1 percent of the container diameter. In addition, 

this curve will not be adequate for conditions in which particle velocity 

approaches the mean free path of the medium molecules or in which the 
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diameter approaches molecular size. 

Bailey (8) discussed the drag coefficient for spheres obtained by 

many investigators. He noted several instances where sphere oscillations 

occurred for Re^^ > 300,the drag coefficient observed was higher than 

that of the standard drag curve. He noted that the measurement of 

drag coefficient can differ due to particle sphericity, oscillations, 

free stream turbulence and surface roughness. 

The drag force on an isolated sphere moving in an infinite expanse 

of stagnant fluid is given by 

where 

Fjj = drag force 

Ap = the projected area, perpendicular to the direction of 

motion 

p = density of the fluid 

u = the velocity of the body with respect to the fluid 

Cjj = drag coefficient. 

For a sphere settling at its terminal velocity In an infinite fluid, 

u^gg, the drag force is equal to the buoyant weight of the sphere, 

therefore. 

= i P Ap u2 (1) 

(la) 
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The Reynolds nxmber based on terminal settling velocityan infinite 

expanse of stagnant fluid is Re^^^ , and is defined by the equation 

= -t- • 

If Re^gg < 0.2 then, 

C = 
D Re-j-oo 

which is consistent with the Stoke*s expression for settling velocity of 

a sphere. 

d(P_ - p)g 

V -

If 1000 < Re < 10 the drag coefficient c can be considered to be of 
t®® D 

constant value 0.44 (which is the mean value of in this region). The 

terminal settling velocity of sphere in Newton region is given by 

ti^co = 1.75 / 
gd(Pe - P) 
! . (4) 

The use of drag curve such as given in Figure 2, to predict free 

fall velocity of a given sphere in a given fluid or to calculate the 

diameter of a sphere corresponding to a given free fall velocity in­

volves a trial-error calculation. In order to alleviate this problem,a 

2 
more useful plot can be derived by plotting (Re^^/Cj^) versus (C^ Re^^^) 

so as to eliminate velocity term from abscissa and diameter term from 

ordinate. These modified plots are found in Zenz and Othmer (112) and 

Kunii and Levenspiel (70) , and the equations are developed as follows: 
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(%-) 
1/3 /4gd(pg - p) 

U 3 pu; too 

1/3 

(5) 

where 

u 
too 

u_ 
too 

4gH(Pg - p) 

a = 
4g^(Pg - p) 

"3^ 

3p' 

1/3 

1/3 
(6) 

(s 
r4gd(Pg - p) 

L 
3pu too 

odu 
too 

"^1/3 

] 

where 

P = 

= d 

4g(Pg - p)P 

j4g(Pg - p)p 
>1/3 

= P.d 

3]i 

3^? 

1/3 

(7) 

Fouia and Capes (49) fitted a fifth degree polynomial of the form 

Y = Z a X ̂  
n 

n=0 

2 1/3 1/9 
to the (Cjj Re^gg) and (Re^g^/C^) values reported by Seywood (63 ) . 

To calculate teminal settling velocity of a sphere of known diameter, 

the following equation is used: 

u 
log (-^) = -1.37323 + 2.06962 log (Pd) - 0.453219 (log Pd)' 
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- 0.334612 X 10"^ (log Pd)^ - 0.745901 x lO"^ 

(log Pd)4 

+ 0.249580 X 10"^ (log Pd)^. (8) 

Standard deviation for estimation of log (—^) 

= 0.0079528. 

2 
Coefficient of determination, r = 0.9996. 

To calculate the diameter of a sphere of known terminal settling 

velocity, the following equation is used: 

^t=o 2 
log (Pd) = 0.785724 + 0.684342 log (-^) + 0.168457 (log -^) 

"too 3 u 4 
+ 0.103834 (log -^) + 0.020901 (log -^) (9) 

+ 0.0057664 (log -^) . 

Standard deviation for estimation of log Pd = 0.0215341. Coefficient of 

2 
determination r = 0.9975. 

There are some other approximate analytical expressions relating 

drag coefficient with Reynolds number. Not all of them are as accurate 

as using the standard drag curve for computations. 

Schiller and Naumann (as cited by Heywood (62)) deduced the 

following equation 

(10) 
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Davis (39) analyzed statistically the experimental results ob­

tained by a number of researchers and proposed the following expressions: 

(i) For Re^„ < 4 

Re^ = 0.00023363 (Cj^Re^p^ (11) 

+ 2.0154 X 10"® (CjjRe^J^ 

- 6.9105 X 10"9 (C^Re^^)* 

(ii) For 4 < Re^^< 10^ 

log Re^^ = -1.29536 + 0.986 log (C^Re^J (12) 

- 0.046677 (log C^Re^J^ 

+ 0.0011235 (log CjjRe^^)^ . 

The author of this thesis used the values and Re^ that are 

used to plot the standard drag curve and obtained the following equation 

for the Reynolds number range between 4 and 104. 

log Re^ = 1.34313 + 1.003356 (log C^Re^ ) - 0.05771 ( 

(log C^Re^^)^ + 0.00187 (log C^Re^ )^ (13) 

and the 95% confidence intervals of the coefficients are as follows: 

-1.34313 +0.053 

1.003356 + 0.037 

-0.05771 +0.008 

0.00187 + 0.0005. 
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Effect of shape on drag coefficient 

The general form of drag coefficient for nonr-spherical particle is 

F„/A_ 

"D " " 
Cn = (14) 

2 P"tco 

Some investigators use the projected area of a sphere of equivalent 

volume for (77 , 82 , 101, 104 ) whereas there are some who advocate the 

use of a diameter based on projected area as the characteristic dimension 

in Cjj and Reynolds number (63, 65). 

Albertson (3) showed that by using the diameter of a sphere of 

equivalent volume as the characteristic dimension in Reynolds number and 

drag coefficient the scatter in the vs. Reynolds number plot for 

different types of gravel could be reduced. 

Malaika (77) offered the following reasoning for using the projected 

area of sphere of equivalent volume for A^: 

"If Ap is the actual projected area then by comparing equations 

(1) and (14) it will be seen that for a given size (same equivalent 

volume diameter) and dynamic properties in equation (1) will vary in-

2 
versely with u^^ as the shape is deformed; hence,will directly reflect 

the velocity change due to shape distortion. On the other hand,in 

2 
equation (14) varies inversely with A^u^^ . Since in general u^^ and A^ 

vary in opposite direction,a plot where actual projected area is used 

the drag would not clearly reflect the effect of shape distortion in 

settling." 
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Non-spherical particles generally tend to orient in a preferred 

direction during fall. Becker (12) studied the fall of Cylinders, 

rectangular prisms and right triangular prisms whose sphericities 

ranged from 0.146 to 0.86. His observations with regard to orientation 

of the falling particles are summarized in Table 1. 

Malaika (77; investigated free fall velocities of particles with 

two axes of symmetry and conducted experiments with cylinders, square 

prisms, double cones and spheroids with axis ratios 4:1:1, 1:1:1 and 

1:1:4. The particle shape varied from long and slender to flat and thin. 

His findings are summarized as follows: 

1. Zone of deformation drag (Re^gg< 0.1). The particles were 

stable in any settling position provided the particles were symmetrical 

about three mutually perpendicular planes. Particles which lacked this 

symmetry tended to orient themselves at particular settling position 

depending on the position of their center of gravity relative to the 

center of force, since these two centers must fall on the same line of 

direction of motion. 

2. Zone of surface drag (0.1 < Re^^ < 500). The particles tended 

to orient themselves with largest cross-section in the three mutually 

perpendicular planes of symmetry in a position normal to the direction 

of motion. Evidently this was not necessarily the maximum cross-

sectional area of the particle. The only exception was cubes, which 

did not show any stable settling position. 
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Table 1. Orientation of freely falling non-spherical particles (12) 

Re Free Orientation 
s 

< 0.1 All orientation are stable when there 
are three or more perpendicular axes 
of symmetry. 

0.5 - 200 Stable in the position of maximum drag. 

200 - 500 Unpredictable. Disks and plates tend 
to wobble, while fuller bluff (non-
streamlined) bodies tend to rotate. 

> 500 Rotation about axis of least inertia, 
frequently coupled with spiral trans­
lation. 

where Re = 
s 

lb = sphericity = surface area of equivalent volume sphert 
^ surface area of the particle 

3. Zone of form drag (Re^,, > = 500). In this region the • 

formation of eddies affected the stability of the position of the 

settling particles. The particles oscillated in the path of motion 

and their projected area was changing continuously with time. 

The surface texture of falling particles has a definite effect on 

their settling velocities. Kumar (69) studied this problem and the 

TTia-fn conclusion of his work was: 
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1. Cylindrical or disk shaped particles falling freely in 

quiescent medium have five different fall patterns: 

(a) Stable fall 

(b) Regular oscillation 

(c) Gliding 

(d) Gliding-tumbling 

(e) Tumbling. 

2. Considering the five fall patterns, the terminal settling 

velocity is greater for particles with rough surface texture. This is 

mainly due to: 

(a) Roughness of the particle stabilizes the separation of flow 

around them. 

(b) The flow pattern relative to the particles is seldom 

stabilized. 

3. For rough particles, the average drag coefficient was reduced 

2.5 to 14 percent in comparison with the drag coefficient of similar 

smooth particles. This drag reduction ranged from 17 to 33 percent 

when the pattern of fall was regular oscillation. 

Some published correlation for vs. Re^oo I'elationship for non-

spherical particles 

Several attempts have been made to produce a general correlation 

of drag coefficient versus Reynolds number with a shape factor as a 

parameter. Wadell (104) in 1934 used sphericity to correlate the 

drag coefficient versus Reynolds number data for various shapes. 

Wadell's correlation of C^ vs. Reynolds number is shown in Figure 3. 

He defined true sphericity of a particle by the formula: 
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rl> (15) 

where 

s = the surface area of a sphere of equal volume as the particle 

S = the actual surface area of the particle 

Other shape factors that are used to characterize a non-spherical 

particle will be considered in detail later under shape measurements. 

Heywood (63) introduced a new measure of particle dimension, the 

projected diameter equal to the diameter of a circle having an area 

equal to the projected area of the particle when placed in the most 

stable position (presumably the position during fall). He defined the 

volume of the particle is given by the equation 

V = Z d ^ 
a 

where 

d^ = the diameter of the circle having area equal to projected area. 

Z = volume constant. 

Heywoods definition would modify the drag coefficient and Reynolds 

number equation as 

(16) 

Pettyjohn and Christiansen (82) used both Wadell's approach and 

Heyvjood's approach to study drag coefficient versus Reynolds number 
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relationships of spheres, cube octahedrons, octahedrons, cubes and 

tetrahedrons in the Reynolds number range from 0.01 to 20,000. Their 

correlation for the drag coefficient is shown in Figure 4 with 

appropriate sphericity values. These investigators found that Heywood's 

volume shape factor Z did not appear to be a useful criterion for 

correlating the effect of particle shape with resistance to motion 

since there was no apparent relationship between and Z. This was 

particularly evident in the highly turbulent region. However, they 

observed that when Re^ < 30 the drag curve for spheres, octahedrons and 

tetrahedrons practically coincide. This suggests the possibility of 

bringing the data for widely disimilar particles together at low 

Reynolds numbers by the selection of the diameter based on projected area. 

Zenz and Othmer (112) showed that the correlation of Pettyjohn and 

Christiansen (82) can be improved by using for the diameter term the 

diameter of a sphere having the same surface area as the particle and in 

addition, multiplying the drag coefficient by the particle shape 

factor "j" defined as the ratio of particle volume to volume of a 

sphere having the same surface area as the particle. The improved 

correlation is shown in Figure 5. 

(18) 

Re 
s 

(19) 
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where 

= the diameter of a sphere having same surface area as the 

particle 

TT 3 
j = volume particle/(-g d^ ) 

If deq is the diameter of the equivalent sphere and is the 

sphericity of the particle, then 

d^ = (20) 

% d ^ d 3 , 
j = -6_êa_ = = 3̂/2 (21) 

f 
On substituting for d^ and 'j* in equation (18) and (19) one arrives 

at 

4g ̂  d (p - p) 
= (22) 

Ke (23) 
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Wadell's plot and Pettyjohn and Christiansen's plot for correlation 

of drag coefficient versus Reynolds number with sphericity as parameter 

gives a illusory feeling that vs. Re^ relationship for non-spherical 

particles can be completely characterized by the use of sphericity, 

but in reality this is not true. If one carefully studies the plots 

of Cjj vs. Re^ in Halaika's work, a double cone with length to diameter 

ratio 1:1, and sphericity of 0.891 has a higher drag coefficient 

compared with a cylinder with length to diameter ratio of 1:1 and a 

sphericity of 0.873 or a cube which has a sphericity of 0.805, at the 

same Reynolds number. In addition, when length to diameter ratio was 

4:1 the drag curve for the double cones, prisms and the cylinders were 

nearly identical although their sphericity ranged from 0.680 for the 

prism to 0.771 for the double cones. 

Heiss and Coull (59) studied the orientation and shape on settling 

velocity of non-isometric particle in the laminar region of Re^. 

They showed that for the same particle, depending on the orientation of 

the particle, the Stoke's law correction factor k (the ratio of actual 

settling velocity to settling velocity predicted by Stoke's law) had 

two distinct values. 

Squires and Squires (99) verified Overbecks (as cited by Lamb 

(71)) theoretical equation for drag force encountered by a very thin 

moving disk in the creeping flow region. Overbeck showed it to be 

"t®^ (24) 
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when the disk is moving with its flat face in the direction of motion, 

and 

fn - IT " «S.4 (25) 

when moving edgewise, where d is the diameter of the disk. They showed 

that for a horizontal disc the drag coefficient was = 20.34/Re^j^ 

for Re^gg < 0.3 where the Reynolds number is based on disc diameter. 

For a disc falling edgewise,if the based on twice the thickness 

(equal to four times the hydraulic radius of the projected area per­

pendicular to the direction of motion), the drag coefficient is 

Cjj = 21.36/Re^ç^ for Re^ <0.02. It is remarkable that the drag 

coefficient equations for the extreme cases of sphere (C^ = 24/Re^gg) 

and disk can be made so nearly the same by selecting an appropriate 

characteristic length term for the Reynolds number. 

United States Inter Agency Committee on Water Resources (101) 

published a correlation for drag coefficient with Reynolds number for 

naturally worn sediment particles with Corey's (33) shape factor, S.F. as 

the shape parameter. The plot of C^ vs. Re^^ is shown in Figure 6. 

The shape parameter S.F. is defined as follows: 

S.F. = (26) 

i/ab 

a, b, c are triaxial dimensions of the particle, and 

a = longest dimension 

b = intermediate dimension 

c = shortest dimension. 
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McNown and Malaika (79) found that S.F. alone is not sufficient 

to characterize the Stoke's law correction factor k (given previously), 

and suggested in addition a second shape factor expressed as*a/b* be 

used to emphasize relative particle length. 

The particle shape effects have been explored to some extent to 

permit a reasonable estimation of particle-fluid flow characteristic 

despite the fact no single shape criterion has yet evolved. One has 

to remember that the cardinal principle in similitude analysis is that 

to achieve dynamic similarity there should be geometric similarity. It 

will be futile to expect two particles of widely varying shapes to 

exhibit dynamic similarity even -though they may have nearly the same 

sphericity, S.F. or any other shape factor. 

Boundary effects on motion of single particle 

Stoke*s law as given by equation (3) applies to spherical 

particles falling in an infinite fluid medium. When the boundaries 

of the medium approach the particle as in the case of a particle 

falling in a cylinder, the displacement of the particle volume creates 

additional retarding effect. 

Fidleris and Whitmore (46) and McNown et al.. (78) showed the 

retarding effect of wall is greatest in the viscous region and pro­

gressively decreases and reaches another constant value in the turbulent 

region. 

Ladenburg's equation (as cited by Fidleris and Whitmore (46)) 

for wall effect in the viscous region is 
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V (27) 
t» 1+2.1 (d/Dp) 

where is the diameter of the tube. 

This equation is the first approximation of a theoretical equation 

derived by Faxen (as cited by Fidleris and Whitmore (46)) which for low 

Reynolds numbers may be expressed as: 

3 5 
^ = 1 - 2.104 (d/D^) +2.09 (d/D^) +0.95 (d/D^) , (28) 
"too 

Equation (28) is limited to values of d/D^ below 0.2 while 

equation 27 is satisfactory when d/D^ ratio is less than 0.1. 

Francis (51) gave the following empirical equation for wall 

effect correction at low Re]molds numbers 

< 
"too 

1 - d/Dp 

1-0.475 (d/D^) 
(29) 

The above equation was found to be satisfactory for d/D^ ratios 

less than 0.9. 

McNown et al. (78) proposed the following equation for d/D^ ratio 

less than 0.25 in the viscous region 

9^ .9 2 . (30) 
too 1 + ̂  (d/D^) + (d/Dgj} 

Fidleris and Whitmore (46) found that Newton's equation given below 

for wall effect in the turbulent range, to agree within 2 percent of their 
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experimental results up to a d/D^ ratio of 0.3 but worsened con­

siderably at higher d/D^ ratios, 

2 1 2 
^ = (1 - d/Dp) (1 - Y (d/D^)"^) . (31a) 

Fidleris and Whitmore also reported that in the particle Reynolds 

number range between 1000 and 3000, Munroe's equation for wall effect 

(equation 31b) showed best agreement with their experimental results 

, 3/2 
 ̂= 1 - (̂ ) . (31b) 

t<» T 

Malaika (77) presented Figure 7 for drag coefficient correction 

factor "m" with Reynolds number and d/D^ ratio as a parameter. This 

figure was based on the work of McNown et al. (78). This figure is 

the only comprehensive work available for drag coefficient correction 

for wall effects in the intermediate range of Reynolds number for small 

— ratios. 
"t 

Garside and Al-Dibouni (54) proposed the following equation for 

correcting for wall effects for d/D^ ratios less than 0.1 in Reynolds 

number range between 3 and 1000: 

^ i . (32) 
t» 1 + 2.35 (d/Dy) 

Richardson and Zaki's (92) equation for correcting for wall 
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Figure 7. Relationship of wall effect correction for drag coefficient, C , with Reynolds 
number, Re^.^, (77) 

Note: — = d/D_ 



www.manaraa.com

34 

, (33) 
t~ 

which they claimed to be valid over a Reynolds number range from 0.2 

to 1000. 

Equations 32 and 33 are inconsistent with the findings of Fidleris 

and Whitmore (46) and McNown et al. (78) for these two equations, 32 and 

33, imply that wall effect is independent of Reynolds number, whereas 

Fidleris and Whitmore and McNown et al. showed that the wall effect varies 

with the particle Reynolds number. 

However, these two equations, 32 and 33, at the same d/D^ ratios 

predict correction factors which are more in agreement with those pre­

dicted by equations 27 through 30 rather than with Munroe's equation 

31b. The equations 27 through 30 are applicable only in the viscous 

range whereas Munroe's equation is valid in the lower end of the turb-

3 3 
ulent range (10 < Re^ < 3 x 10 ). This is illustrated by Figure 8. 

No investigation is docxmented in the literature as to the in­

fluence of a finite fluid container on the drag of non-spherical 

particles. Malaika (77) suggested using the diameter of a circle 

having the same area as the projected area of the particle for the di-. 

ameter term in d/D^ ratio. This is based on the assumption that the 

projected area influences the return flow which in turn affects the 

velocity gradient and hence the shearing force. 
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Figure 8. Comparison of different wall effect correction eauatlons for u /u ratio with 
d/Dy ratio " ^ 
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Flow Through Packed Bed of Granular Materials 

Darcy, in 1830 (as cited by Coulson and Richardson (35)) cairried 

out the first experimental work on flow through packed beds when he 

examined the fate of flow from the local fountains through beds of 

sands of various thickness. He showed that average velocity of flow 

measured over the whole area of bed was directly proportional to the 

driving force and inversely proportional to thickness of the bed. 

This relation is termed as Darcy*s law and is written as follows: 

AP = the pressure drop across the bed 

L = thickness of the bed 

u = the average velocity of the fluid or superficial velocity 

B' = coefficient of permeability 

y = coefficient of viscosity. 

The value of permeability coefficient varies over a wide range of 

values depending on the shape, size and packing of the granular material. 

Equation 34 is valid only under laminar flow regime. 

Kbzeny (67) developed the following well—known equation in the 

laminar flow regime 

(AP/L) 
(34) 

where 

(35) 
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where 

S = specific surface 

= —g— for spherical and — for non-spherical particles 
eq 

(p = sphericity 

= diameter of a equivalent volume sphere 

d = diameter of spherical particle 

e = porosity of the bed. 

The pressure drop AP ia a stream of fluid flowing through length 

L of a particle bed of uniform spheres can be expressed by the 

equation 

where 

f = friction factor 

u = superficial velocity 

d = diameter of spheres 

p = density of the fluid. 

One can observe the similarity between equation 36 and the Darcy-

Weisbach equation used to calculate the friction loss in pipe flow. 

Many investigators (23, 24, 43) have sought to derive empirical 

correlation for the friction factor f. However, the variables like 

particle shape, roughness, distribution, manner of packing and 

similar less definable parameters have made the task quite involved. 

There are at present several well-recognized correlations which permit 
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reasonable prediction of the pressure drop through bed of spherical 

and non-spherical material. 

From dimensional analysis it follows that the pressure drop per unit 

bed height for geometrically similar beds may be written as 

^ u^ d^~^ (37) 

where 

u = representative velocity 

d • = representative dimension of the grains 

y = coefficient of viscosity of the fluid 

p = density of fluid 

X = constant of proportionality 

X = exponent depends on the flow regime 

AP 
— = pressure drop per unit bed height. 

Blake (20) suggested that average interstitial velocity be 

used for u^and d to be chosen as a length analogous to the hydraulic 

radius of a conduit. Accordingly, 

u = I (38) 

^ _ mean cross-sectional area of flow channels through the bed 
- mean wetted perimeter of flow channels 

If the numerator and denominator of the above ratio are multiplied by 

the bed depth L, one obtains 

J _ (total bed volume) x £ _ _£_ _ £ rog-. 
~ total bed surface S(1 - £) 
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where 

u = superficial velocity 

e = porosity 

= surface area per unit bed volume 

S = specific surface of the particles. 

For a bed of uniform spheres 

d = — (40) 
6(1 - E) 

Substituting equations 38 and 40 in 37, the following equation is 

obtained 

•^ = X d^ ^ u^ ~ ^ • ' (41) 

The friction factor f, defined by equation 36, is given by, 

uX-2 pX-2 ^X-2 _ e)3-X 

J.xl (1 - e)3-X/e3 (42) 

Re ^ 

where 

At low Reynolds number where the pressure drop does not depend on fluid 

density, equation 41 implies that X = 1» and therefore the friction 

factor 
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(43) 

and at high Reynolds numbers, the viscosity is unimportant which 

means % - 2, then friction factor 

This hypothesis is exemplified in Ergun *s (41) empirical 

correlation for the pressure drop in packed bed which is as follows: 

where 

S = specific surface 

u = superficial velocity 

L = depth of the bed 

Ap = pressure drop. 

To obtain the specific surface from permeability data as will be 

shown later in the illustrative calculations, it is desirable to 

rearrange equation 45a to the following form: 

^-4.17 (45a) 

(45b) 

If a modified Reynolds number is defined in terms of u, d 
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Equation 45a can be written as: 

3 
4.17 Ee,"^ + 0.29 (47) 

S'' p»2(l - e)  ̂

Ergun (41) found equation 47 to correlate experimental data well 

for values of Re^ from 1 to over 2000. 

Carman (27) took a different approach and found the following 

correlation. 

^ ^ = 5 Re + 0.4 Re7°*^ (48) 

SLpu (1 - £) 
for Re^ from 0.5 to over 1000 

For small Re^ values (less than about 2), the second term on the 

right hand side of equation 47 and 48 is small and negligible. In this 

Re^ range,both equations 47 and 48 are of the same form except for 

the constants 4.17 and 5.0. 

Coulson (34) found this constant k" (constant in the 1st term of 

equation 45) to vary with porosity of packed bed and the shape of the 

particles, with extreme values occurring with thin plates. But,,for 

normal granular material Kihn (as cited by Coulson and Richardson (35)) 

and Pirie (84) found that k" is reasonably constant. 

At high Reynolds number (Re.), Blake's (20) theory predicts that 

Ap _ _ 
—: should be a constant. Although Ergun (41) found this to be 

SLpu (1-e) 
true in his work, other workers had only limited success. Carman (27) 

analyzed large amounts of data for beds of spheres, rings and saddles 

and found deviations of the order of + 50 percent. 
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There is some doubt about the form of equation 45 in which the 

viscosity is completely absent from the inertial term (2nd term) . In 

pipe flow, the viscosity enters to the 0.1 to 0.3 power in its effect 

on pressure drop. It might be expected that a similar effect would 

be present in flow through a porous medium. Fahien and Shriver (as 

cited by Tiller (100)) proposed an equation of the form 

p(l-e) U^ 
d 

£ eq 
(49) 

where the constants C_ and C_ were function of modified Reynolds 
pu d " 

number _e£ 
p(l-e) 

Blake's (20) suggestions regarding u, d, have been criticized by 

Chilton and Colbum (29) , Bakhmeteff and Feodoroff (9) and Furnas (as 

cited by Carman (27)) who stress the fact that the pressure drop 

through the bed results not only from frictional resistance at the 

particle surface but also from loss of head owing to expansion and 

contraction of flow. Fumas considered that the fractional effective 

free (cross-sectional) area for flow is only about 0.10 to 0.20 e 

rather than e as assumed by Blake. For example, in a bed of spheres 

packed in the most loose arrangement (cubic packing) the voidage £ is 

0.476, but the fractional free area in a plane of centers is only 0.215; 

in a plane parallel to this plane one-half diameter away, the fractional 

free area is unity. A fluid flowing through such a bed would undergo a 

large contraction and expansion as it traverses each layer of spheres. 

Graton and Fraser (56) have pointed out, however, that such a packing 
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should offer different flow characteristics according to the direction of 

flow, whereas natural granular beds with random packing have the same flow 

characteristics in all directions. In a random packing,the 

fractional free area at any cross-section is constant and equal to voidage 

e. Carman (27) argues therefore, that interstitial velocity does not 

alternatively increase and decrease but is a constant. Carman (27) 

offers the following description of flow through the bed: 

"Within the bed there cannot be any isolated pore channel 
given the whole system of voids is inter-connected so that 
where the section of one void is decreasing in the direction 
of flow, the velocity does not increase but the excess of fluid 
escapes to a neighboring void, the section which is enlarging 
in the direction of flow. While this emphasizes the constancy 
of the rate of flow at each point of the bed it also makes the 
sinous character of the flow clear. It is obvious every flow 
line of the fluid in the continual division and rejunction with 
other flow lines, must follow a very tortuous path." 

The success of Blake's suggestion in the viscous range indicates 

that Cairman's discription is probably correct at low Reynolds numbers. 

The inconsistency of the constant in the second term of equation 45 as 

reported previously by Carman would indicate that equation 44 places too 

great a dependence of the friction loss f on porosity £ at high 

Reynolds numbers and suggests that the loss of head owing to expansion 

and contraction becomes a significant fraction of overall pressure 

drop at high Reynolds numbers. Chilton and Colbum (29) gave an 

expression for the part of the pressure through a bed which is due to 

expansion and contraction losses. According to this expression at high 

Reynolds numbers that part of friction factor f arising from these 

1 3 
losses varies approximately as—^ rather than as (1 - e)/£ according to 
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Blake's theory. 

Although one cannot deduce the relative contributions that 

friction losses and expansion and contraction losses make toward the 

overall pressure drop at high Reynolds numbers, it is reasonable to 

assume that both effects are important. 

Characterization of Non-Spherical Particles 

Unlike spherical particles,there is no single diameter to describe 

a non—spherical particle. The following table reproduced from Allen 

(5) gives the definition of different diameters used to describe a non-

spherical particle. 

Heywood (61) has presented an interesting discussion on the 

meaning of sieve size in defining the diameter of a sample of sieved, 

irregular particles. Although a definite answer could not be given, 

he concluded that the sieve size i.e., the size of the smallest passing 

sieve, was an indication only of the intermediate dimension of three 

mutually perpendicular axes of a particle. Figure 9 shows the re­

lationship between sieve diameter and Intermediate axis length and 

sieve diameter and equivalent spherical diameter (d^) for naturally 

worn river gravel. 

The shape factors that are used to characterize non-spherical 

particles can be expressed in terms of two more diameters defined in 

Table 2. A wide range of techniques has been suggested in the last 

fifty years or so. Fleming (48) described many of the concepts for 

analysis of particles by shape. He commented that the theory and 
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Figure 9. Comparison of smallest passing sieve size with intermediate axis length and equivalent 
spherical diameter, d^^, for naturally worn gravel (95). d^^ = smallest passing 

sieve size, d^ = equivalent spherical diameter d^^ 



www.manaraa.com

Table 2. Different diameters used to characterize 

1. Sieve diameter 1 d,, 
A1 

2. Sieve diameter 2 d^^ 

3. Volume diameter (equivalent d 
spherical diameter) 

4. Surface diameter d 
s 

5. Surface-volume diameter d 
sv 

6. Drag diameter d^ 

7. Free-falling diameter d^ 

8. Stoke's diameter d 
S t  

9. Projected area diameter 1 d^ 

10. Projected area diameter 2 d^ 

11. Perimeter diameter d 
c 

non-spherical particles (5) 

Smallest sieve aperature through which particle 
will pass 

Mean aperture of smallest passing and largest 

retaining sieves 

Diameter of a sphere having the same volume as 
the particle 

Diameter of a sphere having the same surface 
area as the particle 

Diameter of a sphere having the same external 
surface to volume ratio as particles 

Diameter of a sphere having the same resistance 
to motion (i.e., drag force) as the particle in 
a fluid of same density and viscosity and at 
the same relative velocity 

Diameter of a sphere having the same density 
and the same free falling speed as the particle 
in a fluid of same density and viscosity 

The free falling diameter of a particle in 
laminar flow region (i.e., Re^g^ < 0.2) 

Diameter of a circle having the same area as 
the projected area of the particle resting In 
a stable position 

Diameter of a circle having the same area as 
the projected area of the particle in random 
orientation 

Diameter of a circle having the same perimeter 
as the projected outline of the particle 
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12. Feret's diameter d^ 

13. Martin's diameter d„ 
M 

14. Circumscribing diameter d^^ 

15. Inscribing diameter d^ 

The mean value o£ the distance between parallel 
tangents on opposite sides of the particle 
measured in a fixed direction for a number of 
particles. 

The chord length of the projected outline of 
the particle, i.e., the length of the line 
which bisects the image of the particle. The 
line may be drawn In any direction which must 
be maintained constant for all the Image 
measurements 

The diameter of the smallest circle which 
circumscribes the projected outline of the 
particle 

The diameter of the largest circle which will 
fit inside the projected outline of the 
particle 
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practice of many such measurements are based on work of Wadell (102, 

103, 104). 

Wadell defined the term sphericity by saying, "it is evident 

that the most exact shape expression approximately reflecting the be­

havior of a particle in suspension is the ratio of the surface area 

of the sphere of the same volume as the particle to the actual surface 

area of the particle." 

The techniques for measuring shape can be divided into two groups, 

namely direct and indirect methods. 

Direct methods 

While many direct measures have been reported in the literature of 

sedimentary petrology, powder technology and geology, only a very few 

will be considered here to illustrate the nature of measurements. One 

is referred to Davies (38) for a critical review of particle shape 

measurements. 

Wadell's sphericity is defined as follows: 

^ _ surface area of a sphere of same volume 
surface area of the particle 

Since the true surface area of a particle is difficult to measure, 

unless the particle conforms to a known geometric shape, Wadell proposed 

a operational formula for sphericity 

«•opt - A (50) 
cs 
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where 

= diameter of a circle having the same area as the projected 

area of the particle when resting in a stable position. 

d = the diameter of the smallest circle which circumscribes the 
cs 

proj ected outline of the particle . 

Wadell pointed out that for quartz particles the value of 

operational sphericity generally approached the true sphericity. But 

this modified definition gives a sphericity of one for circular discs, 

which is diametrically opposite to sphere with regard to shape. 

Therefore, the validity of this modified definition for flat platy 

particles is questionable. 

Krumbein (68) presented a similar expression for operational 

' sphericity using calculated volumes instead of areas. 

. _ volume of the particle 
opt volume of the circumscribing sphere 

He approximated the volume of the particle to a triaxial 

ellipsoid: 

Volume of the ellipsoid = ̂  abc 

where 

a = the longest dimension of the irregular particle 

b = the intermediate dimension 

c = the shortest dimension. 

ua^ 
If the volume of circumscribing sphere is taken as —g—,then. 



www.manaraa.com

50 

(52a) 

Sneed and Folk (98) argued that Wadell's sphericity,although a 

geometrically valid parameter, is not a behavioristic parameter if one 

is considered with dynamics of particles under natural hydraulic 

conditions. They proposed a maximum projection sphericity which is de­

fined as follows: 

Sneed and Folk (98) showed that the Krumbein (68) data, when re­

analyzed, gave better correlation for settling velocity against 

maximum projection sphericity for different shaped particles of nearly the 

same equivalent spherical diameter and density. 

Corey (33) analyzed sedimentation data and concluded that the ratio 

—^ gave the most significant expression for particle shape. 
/ab 

Heywood (61) moved away from the concepts of sphericity to define 

what he termed as shape coefficient. He began by defining three 

dimensions of a particle. 

1. Breadth B - The minimum distance between two parallel lines 

_ maximum projection area of a sphere of equal volume 
max maximum projection area of a particle 

in terms of triaxial dimensions 

{(abc) 
2 

(52b) 

tangent to the profile of the particle when viewed 
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perpendicularly to the plane of rnavimum stability. 

2. Length L - The maximum distance between two parallel lines 

tangent to the profile of the particle as defined above and 

perpendicular to the lines defining the breadth. 

3. Thickness T - The distance between the two planes parallel to 

the plane of maximum stability and tangent to the surface of 

the particle. 

Heywood also defined the following coefficients: 

3 
1. Volume of the particle = V = Z d^ 

2 
2. Surface area of the particle = S = f^ d^ . 

where 

d^ = the diameter of a circle having the same area as the projected 

area of the particle in its most stable position 

Z = volume coefficient 

f^ = surface area coefficient. 

Heywood gave empirical equations to obtain d , Z and f from B, L, 
^ 1 

T and their ratios for seven different shapes. One is referred to 

Allen (5) for a detailed description of this method for calculating 

settling velocity of known size particle. 

Pettyjohn and Christiansen (82) showed that for isometric particles 

they investigated, the Heywood's volume coefficient (Z) was not 

satisfactory for correlating the drag coefficient data with particle 

Reynolds number. However, Johnstone et al. (65) have found that 

Heywood*s approach with small modification can be used to correlate 

Cjj vs Re^ data for discs, sand, carborundum and aloxite. They used a 
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diameter based on mean projected area of the particle (the average of 

the projected area in several random stable orientations). 

Indirect methods 

Indirect methods do not require the individual measurement of 

particle dimension. These methods, instead, rely on some non-

dimensional property of a particle which varies with particle shape or 

is based on some statistical analysis of a set of particles. 

Use of liquid or air permeability and BET adsorption isotherm 

methods for determining the specific surface of a collection of 

particles are examples of two frequently used indirect methods. 

Austin et al. (7) measured the specific surface of anthracite and 

bituminous coal of various size ranges, ground in a standard hard-

grove grinding mill. They measured the specific surface of the 

material by a liquid permeability technique and apparent density by 

mercury porosimeter. The sphericity (which they called the shape factor) 

was calculated by the equation 

^ = — (53) 
34= 

where 

S = specific surface 

d^ = arithmetic average of passing and retaining sieve. 

After analyzing several sources of coal, they concluded that the 

sphericity was constant with size for a given coal source over a size 

range from 16 to 325 U.S. mesh. 

Presler (85) determined the specific surface of different size 
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fractions of crushed magnesite and galena ore by measuring the 

pressure drop across a bed of known height and porosity at varying 

flow rates of water through the bed. He used Ergun's equation to 

calculate the specific surface but used Kozeny's coefficient of 4.97 

instead of 4.17 which Ergun recommended in his equation for the first 

term. The author of this thesis calculated the sphericities for 

different size fractions of the ores using the specific surface values 

obtained after adjusting the coefficient to 4.17 and the sphericities 

are tabulated in Table 3. 

Table 3 shows that the sphericity values generally increase as the 

size fractions become finer even though there are occasional irregu­

larities in that pattern. In light of the above observations,the 

conclusion of Austin et al., that sphericity essentially remains con­

stant with size for a given coal source seems questionable. 

Briggs, McCulloch and Moser (22) defined a term called, "Dynamic 

Shape Factor", which was based on hydraulic properties of the 

irregular particle. They used measured settling velocity of the particle 

and the calculated settling velocity of smooth sphere of equal volume 

and density with diameter d^^. The dynamic shape factor was expressed 

as follows: 

u u 2 
DSF = a M + b, M (54) 

^ % 

where 

u^ = terminal free settling velocity of particle 
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Table 3. Sphericities for different size fractions of galena and 
magnesite ores (original data from Presler (85)) 

Sphericity ̂  

Sieve Size Galena Magnesite 

9-10 - 0.554 

10-12 - 0.475 

12-14 - 0.491 

14-16 0.635 0.440 

16-20 0.601 0.498 

20-24 0.581 0.489 

24-28 0.657 0.522 

28-32 0.668 0.612 

32-35 0.742 0.586 

35-42 0.839 0.573 

42-48 0.954 0.666 

48—60 1.000 0.693 

60-65 1.148 0.744 

65-80 1.109 0.809 

^yler sieve passing and retaining the material. 
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Ujj = the free settling velocity of the equivalent volume sphere 

in the same fluid at the same temperature. 

ai + ̂ 1 = 1 

Although Briggs et al., gave equation 54 as the definition DSF, 

2 
they used the ratio (u^/u^) for determining the values of DSF. The 

two formulae differ significantly only at low particle Reynolds 

numbers. 

Gunasingham et al. (57) in order to correlate the fluidization 

expansion data, used the ratio fi. This shape factor is defined as 

follows; 
diameter of a sphere with settling velocity equal to ir-

^ _ regular particle in the same fluid at the same temperature •; 
equivalent spherical diameter 

d, 
= d^ (55) 

eq 

Discussion on the Variation of DSF and ÎÎ with Particle 

Reynolds Number 

In some sanitary engineering, literature the shape factor has er­

roneously been equated to sphericity. The author of this thesis, from 

the data presented by Pettyjohn and Christiansen (82) for different 

geometric shapes, calculated the DSF and 5 values at different 
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Reynolds number regions. Table 4 shows the asymptotic values of DSF 

and Î2 at very low Reynolds numbers and very high Reynolds numbers. 

Table 4. The values of DSF and fl for the isometric particles studied 
by Pettyjohn and Christiansen (82) at low and high particle 
Reynolds numbers 

Sphericity Upper Limiting Value Lower Limiting Values 
Shape at Low Reynolds No. at High Reynolds No. 

4* DSF 0 DSP Q, 

Cube octahedron 0.906 0.972 0.986 0.495 0.495 

Octahedron 0.846 0.939 0.969 0.372 0.372 

Cube 0.806 0.929 0.964 0.319 0.319 

Tetrahedron 0.670 0.846 0.920 0.216 0.216 

Figure 10 shows the variation DSF with particle Reynolds number 

(Re^) for tetrahedrons and Figure 11 shows variation of with particle 

Reynolds number (Re^) for tetrahedrons. 

This clearly illustrates that the two shape factors, DSF and Q, 

are not constant for a particular geometric shape but vary with Re^. 

This fact can be demonstrated clearly with help of Figure 12. 

Let Cjj and Re^ be the drag coefficient and Reynolds number of non-

spherical particle and it's true position on log vs log Re^ plot is 

located by P. 

s • j " 
PUt 

Re^ = (57) 
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Figure 10. Dynamic shape factor, DSF, versus Re relationship for tetrahedron 
(Tetratedrôn => 0.670) 
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Figure 11. Hydraullcally equivalent diameter shape factor, fi, versus Re^ relationship for 

tetrahedrons (Tetrahedron \|J « 0.670) 
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Figure 12. versus Re^ relationship for spheres and for particular non-sphere at point P 
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C, i lia p(Pg - P) 

s • * i,. 

If a straight line is drawn with a slope-2 through the point P, 

from equation 58, it is seen that the points characterizing particles 

with same equivalent spherical diameter but different settling 

velocities will fall on this line. If this line intersects the drag 

curve for the spheres at P^, P^ will characterize the spherical 

particle with diameter equal to d^^ and settling velocity u^ with 

particle Reynolds number Re^. 

u 2 Re 2 
DSF = (^) (59) 

From Figure 12, 

log Rejj - log Re^ = p 

therefore, 

!j lO-P 

Re 2 
DSF = (^) = 10 ^ (60) 

By substituting for d^^ in equation 56, from 57 the following equation 

is obtained 
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4 S (P_ - P) 

S ~ 3 2 3 
P 

From equation 61,it is evident that a straight line drawn with slope + 1 

in log Cjj vs log Re^ through the point P, characterizes all the 

particles with settling velocities u^ but with different equivalent 

spherical diameters. If this line intersects the drag curve for 

spheres at P^ characterizes the spherical particle with settling 

velocity u^ and diameter d^. 

d. Re-

" - ' ËiT 
eq t 

In the same manner, since Figure 12 is in logarithmic coordinators, it 

follows that 

^ . 10-1 

0 = 10 4 (63) 

If Re^ and Re^ lie on the constant drag coefficient segment of the 

drag curve (high Re), from the principles of geometry it is seen that 

q = 2p and therefore, SI = DSF at high Reynolds numbers. For small 

Reynolds numbers,the drag curve for non-spherical particles are closer 

to the drag curve for a sphere as shown earlier in Figure 4. If the 

point P in Figure 12 is closer to the drag curve for spheres, the 

magnitudes of p and q are small and therefore DSF and Î2 will have 

higher values. In the turbulent region, the point P is farther away 
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from the drag curve for spheres. In this region,the DSF and Q are 

lowest in magnitude- Furthermore, in the low or intermediate regions 

of Re, q # 2p and therefore, DSF f 

In view of the above facts,the relationships between triaxial shape 

factors and DSF as reported by Briggs et al. (22) are not correct. For 

that matter, it is not possible to obtain a relationship between 

geometric shape factors and DSF or SÎ unless one could restrict the 

measurements to the turbulent region of particle Reynolds number. 

Fluidized Beds 

Introduction 

Fluidization can be observed by passing a fluid (gas or liquid) 

upwards through a bed of solids wherein it encounters a resistance to 

flow and a resultant pressure drop. As the flow rate is increased, the 

pressure drop increases approximately linearly with flow rate. As the 

flow rate is increased further, a point is reached where the pressure 

drop is sufficient to bear the bouyant weight of particles. Any 

further increase in flow rate causes the bed to expand and accommodate 

the increased flow rate while maintaining the pressure drop effectively 

the same. In the fluidized state, the bed exhibits liquid like 

characteristics of mobility, hydrostatic pressure and an observable 

upper free boundary. In general, the transition from fixed bed to 

fluidized bed resembles the conduct of many solids in melting; the bed 

initially passes from solid into plastic state and finally becomes 
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completely liquid. Each particle then possesses an individual 

freedom of motion paralleling that of a molecule in a true liquid. 

The characteristics of an ideal fluidized bed and the distortion due 

to real conditions are shown in Figure 13. 

General definition of fluidized beds 

The point of incipient fluidization In the transition from 

fixed beds to fluidized bedsythere is a change in the regime of flow from 

one where the frictional energy losses increase with increasing flow rate 

and are independent of weight of the particles to one where they are 

nearly constant and essentially dependent on the gravitational forces. 

While the transition is usually rather gradual and proceeds over a range 

of flow rates depending on the nature of the bed, it is desirable to 

define some definite point of incipient fluidization at which the complete 

change in regimes is assumed to take place. This point is selected as 

the intersection of the two linear segments of the curve depicting pres­

sure drop versus superficial velocity and is shown in Figure 13. 

Particulate or homogeneous fluidization Particulate fluidization 

refers to a condition in which the solids are individually and uniformly 

dispersed and is commonly observed in beds fluidized by liquids. 

Figure 14b shows particulate fluidization. The motion of the particles 

consists chiefly of a Brownian-1ike oscillation but under turbulent flow 

conditions there may also be a rotational motion. In addition, there 

may be a mixing effect causing a circulation of particles in the bed as 

a whole. In general, a bed in which there is little or no mixing of 
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Figure 13. Characteristics of a fluidized bed (36) 
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Figure 14b« Flow regimes in a particulate fluidized system (36) 
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the particles is called a quiescent fluidized bed. 

The term "teetering", used in the mineral industry refers to sus­

pensions of the particularly fluidized type and describes a practical 

application of particulate fluidization. The term hindered settling 

means an operation which is the reverse of particulate fluidization 

when a suspension settles in a column of fluid instead of being 

supported by upward flowing stream of fluid. 

Aggregative fluidization In particulate fluidization, when 

the whole bed has been fluidized, the flow of increasing volumes of fluid 

is facilitated by a continuous uniform expansion of the bed which 

provides a flow path between particles. In contrast, in aggregative 

fluidization, the bulk of the bed tends to maintain itself in a dense 

state in which conditions are near the point of full fluidization or point 

of loosest contact and additional volumes of fluid flow through the 

dense phase in a fashion resembling passage of gases through liquids. 

The volume of flow in excess of the flow required to maintain the 

dense phase in suspended state generally carries a dispersed 

population of particles and is therefore referred to as the dilute 

phase. Aggregative fluidization is thus characterized by the 

coexistence of a dense and dilute suspension and is frequently 

referred to as a two phase fluidization. The two phase theory of 

aggregative fluidization postulated that all gases in excess of minimum 

fluidization passed through the bed as bubbles. The bubbles increase 
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in size as they pass through the bed and burst at the surface of the 

fluidized bed, with a light scattering of the solid particles at the 

surface and particles carried by the bubbles themselves. At higher 

rates of gas flow, the frontal diameter of the bubbles builds up to 

the diameter of the container and a condition called "slugging" of 

the bed is developed. 

The following relations represent some criteria that are available 

to distinguish between particulate and aggregative fluidization; 

(a) Wilhelm and Kwaak (109) . 

Froude Number Fr = —< 1 for particulate fluidization (64) 
® eq 

(b) Zenz and Othmer (112). 

•^ < 2 - 3 for particulate fluidization (65) 

(c) Davidson and Harrison ( 39 . 

D 
m 

2 
u_ 

(66) 
d 
eg 

0.5gd 
1 - e eq "mf 

where 

D = maximum diameter of the bubble 
m 

u^ = terminal settling velocity of the particle 

d^^ = equivalent spherical diameter of the particle. 
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^1 particulate fluidization 
e.q 

D 
1 ̂  ^ 10 transitional region of fluidization 

eq 

D 
> 10 aggregative fluidization. 

eq 

(d) . Romero and Johnson ( 93) . 

Ps - p L 
•g—] < 100 for particulate (67) 
t fluidization. 

where 

= ^ mf 
mf g d 

eq 

pu f d 

^^mf = 
mf eg • 

= depth of the bed 

Dj. = diameter of the column. 

Channelling Channelling is an abnormality of an idealized 

fluidized system and is characterized by the establishment of 

preferential flow paths of pure fluid through the bed. It can occur 

both in particulate and aggregative fluidized systems. It is often 

caused in beds of fine particles or of sticky particles which tend to 

agglomerate. The calming section at the bottom of the bed that is used 

to distribute fluid has a profound effect on channelling (73). The 

extreme form of channelling is called a "spouting bed." A rapid upward 
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flow of particles is observed in the channel while in the bulk of the 

continuous phase there is a balancing downward movement. Figure 15 shows 

channelling and spouting conditions. 

Prediction of Minimum Fluidization Velocity 

Several equations have been proposed to predict the minimum 

fluidization velocity of unisized spherical materials. Some of these 

equations have correction factors incorporated into them to account for 

non-spherical materials. 

Sen-Gupta and Rao (96) have published a review paper on the 

equations that have been presented over the years by several workers. 

They presented 45 different equations to predict minimum fluidization 

velocity. Some of the equations these authors chose to present in the 

form given by the original worker. This has led to a situation where 

the numerical constant reported in some of the equations is not compatible 

with units reported in the article. 

Three fundamental approaches are followed to develop an equation to 

predict minimum fluidization velocity, even though the three approaches 

may not be mutually exclusive. The three methods are: 

(1) Use of a fixed bed pressure drop equation and equating the 

pressure drop to the bouyant weight of the bed. 

(2) Extrapolation of velocity-voidage expansion relationship 

to the fixed bed porosity. 

(3) Obtaining a ratio between minimum fluidization velocity and 

terminal settling velocity in terms of the Galileo number or 
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Figure 15. Channelling and spouting conditions (36) 
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some other parameter of the bed material. 

Of the equations found in literature to predict the minimm 

fluidization, only a few of each method will be considered here for 

illustration. 

Equations based on fixed bed pressure drop equation (method 1) 

Leva's equation (73). 

;5 -
where 

= superficial fluid mass velocity at minimm 

2 
fluidization in lb /hr - ft . 

m 

d = diameter of the particle in inches. 

Y and = fluid and particle specific weights respectively, in 

Ib^/ft^. 

y = viscosity in centipoise. 

This equation can be applied only when flow in the fixed bed is in 

the laminar flow regime because this equation was based on Kozeny's 

equation which is limited to laminar flow. The use of equation 68 was 

limited to Re^ <10, where Re^^ is the Reynolds number based on 

minimnm fluidization velocity. 

Zabrodsky (111) proposed a multiplying correction factor to expand 

its use for Re^ > 10, the correction factor is 

" 1.775 Re^-0'272 (69) 
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for 

10 < Re^ < 300 .• 

Frantz (52) performed regression analysis on his data and data 

of some other workers and from the line of best fit he was able to 

modify the exponents of Leva's equation. From a statistical analysis 

of his data, Frantz developed the following equation, 

1.69 (p, - p):-" 

— 

where 

= superficial mass flow rate at minimum fluidization 

2 
velocity in Ib^/hr - ft . 

d^q = equivalent spherical diameter of the particle in ft. 

U = fluid viscosity Ib^/hr - ft. 

3 
Pg,p = density of solid and fluid respectively in Ib^/ft . 

= diameter of the tube in ft. 

Wen and Yu (106) based their equation for minimum fluidization on 

Ergun equation for fixed bed pressure drop, and equating the bouyant 

weight of the bed to pressure drop. The general equation is as 

follows; 
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where , 

'^eq .P(Ps - P)8 
Ga = Galileo number 5 

y 

Tp = sphericity of the particle. 

Further, they incorporated an approximation in order to simplify 

the above equation by introducing 

1 - £ jr 
: 11 (72) 

and 

1 ~ 14. (73) 

The simplified equation yields 

- 33.7 . (74) 
^mf 

(33.7) + 0.0408 Ga 

Both equations 71 and 74 are valid in the range 0.001 < Re - < 
mi 

4000. However, the relationship between ̂  and are not entirely 

satisfactory and whenever ip and are available the general equation 

71 should be used as it is more accurate. £ ^ must be the loose bed 
mr 

porosity typical of incipient fluidization. 

For mono disperse material of any shape, Bena et al. (17) proposed 

the following empirical equations to determine the minimum fluidization 

velocities. 

,5 
0.00138 Ga Ga £ 1.06 x 10" 

^ (Ga + 19)°"^^ Re^ < 41.0 

and 
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Re^ = 0.03865 1.06 x 10^ < Ga < 2.13 x 10® 

. (75) 
41.0 < Re^ < 3.99 x 10 

For non-spherical particles, the diameter of a sphere of 

equivalent volume was used as the characteristic dimension. 

Equations based on extrapolation velocity-voidage relationship (method 2) 

Garside and Al-Dibouni (54) and Bamea and Mendick (10) assumed 

that the correlation for predicting bed expansion with superficial 

velocity is valid at the limiting case of incipient fluidization too. 

Garside and Al-Dibouni gave the parameter of the logistic curve to 

predict the minimum fluidization of spherical particles at porosities 

0.4 and 0.45. Bamea and Mednick used the generalized correlation of 

Bamea and Mizrahi (11) to demonstrate how that correlation could be 

used to predict the minimum fluidization velocities of spheres. These 

two correlations will be considered in detail under bed expansion 

correlations. 

Equation based on ratio of mi-nimum fluidization velocity and terminal 

settling velocity (method 3) 

This approach has been generalized by number of workers including 

Pinchbeck and Popper (83), Goddard and Richardson (55) and Bourgeoise 

and Grenier (21) and can be used to obtain minimum fluidizing velocity 

for spherical particles in terms of their settling velocities. 

The Ergun equation for pressure drop is equated to the bouyant 

weight of the bed per unit area and the terms rearranged to yield the 

following equation. 
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(1 - E f) - _ 
= 150 -T3— + 1-75 ̂  (76) 

mx mf 

For spherical particles, the terminal settling velocity can be 

expressed in terms of Ga as follows: 

Ga — 18 Re^ Ga ̂  3.6 

Ga - 18 Re^ + 2.7 3.6 < Ga < 105 ( 77) 

Ga = J Re^ Ga > 10^ 

using these relationships it is possible to obtain a relationship 
Rê . 

between and the Galieo number as shown in Figure 16, for different 
^®inf 

fixed bed porosities. 

It should be borne in mind that these relationships, as given in 

equation 77 are valid only for spherical particles, and the terminal 

settling velocity of a non-spherical particle cannot be estimated 

from its Galileo number alone. This imposes a restriction on extending 

this approach to non-spherical particles. 

Beranek (18) gave the following empirical relationship to estimate 

minimum fluidization for non-spherical particles 

u c 
— = 0.019 + 0.003 B < 0.3 
u^ — o 

— = 0.022 B 0.3 < B < 10^ (78) 
u^ o o 

= 0.09 + 0.005 B > 10 
u^ — o 
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I I I 
U„,ror spheres from 

oRowe(l96l) 
o Rowe and Partridge (1965) 
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Figure 16. Re^/Re^ or u^/u^ versus Galileo number relationship for 

spheres at different fixed bed porosities (88, p. 51) 
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where _ 2 

B 
° gy (Pg - P) 

Ujj = terminal settling velocity of a sphere of diameter 

d^q = diameter of a sphere of equal volume as that of the 

irregular particle. 

In addition to the foregoing, a number of the equations have also been 

published for the prediction of minimum fluidization velocity. The 

equations not only differ in their basic approach, but also in the 

values of constants, exponents, dimensionless group or groups used to 

the correlations. For more elaborate review on this topic, one is 

referred to Sen-Gupta and Rao (96) , or Zabrodsky (111). 

Bena et al. (13, 14, 15) have published three articles on 

determining Tn-t-n-tTmnn fluidization velocity for beds of multisize 

particles during gas fluidization using a relationship for unisize 

particle bed. They suggested that in a liquid fluidized multisize bed 

of a single particle density, the particles segregate along the height 

of the bed in accordance with their terminal settling velocities. This 

fact enables one to calculate the point of incipient fluidization, to 

fluidize the entire bed, by calculating minimum fluidization velocity 

by applying any relationship valid for a unisize bed to the largest 

particle present in the bed. 

Particulately Fluidized Bed Expansion Correlations 

Since this section covers one of the major objectives of the 
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present study, a critical review of the expansion correlations 

available in the literature will be presented here. 

Table 5, which is reproduced from Garside and Âl-Dibouni (54) 

(Table 3 of their paper) shows some of the correlations reported in the 

literature for bed expansion of liquid fluidized spherical particles. 

Some of these correlations will be discussed herein in detail. 

Richardson and Zaki correlation 

The most widely used correlation for predicting expansion with 

flow rate is one due to Richardson and Zaki (92). They observed that 

when superficial velocity was plotted against the expanded bed porosity 

for unisized spherical material^ a straight line resulted as shown in 

Figure 17. 

Such a straight line can be described by the following equation 

log u = log u^ + n log e 

or 

^ = e"" (79) 

where u^ is the intercept velocity at e = 1.0. 

Richardson and Zaki reported that during sedimentation of small 

particles 

"i " "t 

and during fluidization 

!t ̂  ̂ Qd/D^ (80) 

"i 
where 

^ = ratio of particle diameter to column diameter. 
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Figure 17. The relationship between log superficial velocity and 
log porosity as described by Richardson and Zaki (92) 
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Table 5. Some of the published correlations for bed expansion characteristics of liquid 
fluidlzed beds of spherical particles (Garslde and Al-Dibouni (54) Table III) 

Date Author Equation Range of Applicability 

1944 Steinour 
~ exp(-4,19(1-6)) Re^ < 0.2; e < 0.85 

1947 Brinkman 

1949 Lewis et al. 

~ = {1 + 0.75 (1 - e)[l - < 0.2 

u. 
4.65 

1.1 < Re^< 2.6 

1951 Hawksley 
u 1 
— = e exp 

-2.5(l-e) 

H (1-:) 
0.001 < Re^ < 58 

1952 Jottrand — = e -5.6 0.001 < Re^ < 0.4 

1952 Lewis and 
Bowerroan — = 0.7 

"t 
2 < RBj. < 500 

— = 0.7e 2-32 

"t 
RBJ. > 500; e < 0.9 

1954 Richardson 
and Zaki "t 
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where 

n = 4.65 + 20 d/D„ Re^„<0.2 

n = (4.4+18 d/D^) Re^^ -0.03 0.2 < Re^^< 1 

1958 Hâppel 

n = (4.4+18 d/Dy) Re^„ 

n = 4.4 Re 
-0.1 

too 

n = 2.4 

+ 9Z_ _ 3^6 
u 3- + ̂ 2- -

3 + 2,= ' 

where 

y » 1 - e 

1 < Re < 200 
too 

200 < Re^.^ < 500 

Re^co > 500 

Re^ <0.2 

1959 

1961 

Loeffler and 
Ruth 

Oliver 

M
 1 CO
 

5.7 + 
(1-e) 

= (1 - 2.15(1 - E))(l - 0.75(1 - E)l/3) 

Re^ < 0.5 

Re^ < 0.4 

1966 Wen and Yu e*'? Ga = 18 Re + 2.7 Re^'®®^ 

Ga 
p(pg - P)gd" 

10"3 < Re^< 10^ 

Re = ̂  
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Table 5. continued 

Date Author Equation Range of Applicability 

1973 Bamea and 
Mizrahi 

'4d(Pg - p)g* 

3pu (1 + (1 - e)l/3) 

Re. .  
9 y 

e e«p 
L 3E 

1974 

The relationship between vs. Re^ is coincidental with the standard drag curve 

for spheres (C^ vs. Re^oo^ for 10 ̂  < Reij) < 3 x 10^. 

Letan 
(1 + 0.15 Re^O'GB?) 

^ 1 + 0.15 (Re^ . ̂)0'687^ ^1.72 

1.5 < Re^ < 2200 

8 
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Further, they presented the following empirical equations for the 

expansion coefficient n for spherical particles 

n = 4.65 + 20 (^) < 0.2 

n = (4.4* + 18 (d/D^))Rej.„ 0.2 < Re^< 1.0 

n = (4 .4^ + 18 (d/D ))Re 1 < Re < 200 
(81) 

n = 4.4* Re^ 200 < Re^^ < 500 

n = 2.4 Re^^ > 500 

Discussion on the shortcomings of Richardson and Zaki correlation 

Richardson and Zaki (92) failed to observe that beyond a porosity of 

approximately 0.9 the log u vs. log £ plots deviates significantly from 

linearity. Adler and Happel (1) suggested that equation (79) underesti­

mates the mutual influences of particles in very dilute systems where E 

approaches unity and therefore gives values of u which are too high this 

region. Adler and Happel (1) presented Figure 18 and commented that the 

curvature in the plot is more pronounced with increasing particle Reynolds 

number. Bena et al. (16) also made similar observation. These obser­

vations lead one to believe that the characteristics of a liquid fluidized 

system change drastically when the expanded bed porosity is approaching 

unity. The intercept velocity u^, is obtained by extrapolating the 

straight line in log u vs. log £ plot to £ = 1. The u^ value thus ob­

tained, bears no relationship to the actual physical process involved 

^he values were changed by Richardson (88). 
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Figure 18. The relationship between u/u^ and porosity as 
reported by Alder and Happel (1) 
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at e = 1. Due to this fact u^ cannot be accurately estimated. 

Table 6 shows the relationship between superficial velocity and 

terminal settling velocity for dilute suspensions in creeping flow 

regime. Except for one equation the general form of the equation is: 

and this equation is quite different from the exponential equation given 

by Richardson and Zaki (92 ). 

The author of this thesis plotted log — vs. d/D^ in Figure 19 for 

the data obtained by Richardson and Zaki (92), Lewis et al. (75), and 

Loeffler (76). This figure clearly indicates that equation 80 is not 

valid and leads one to believe that u^ is a mathematical artifact without 

any physical significance. 

Bena et al. (16) have proposed that the general relationship be­

tween Reynolds number based on superficial velocity and porosity on a 

log-log plot can be approximated by two straight lines and a curve as 

shown in Figure 20. 

Re^-j and Re^g obtained from the following equations for the 

spherical particles 

Re^ = 0.0157 Ga°'G9G + 0.400 

Re^ = 0.192 Ga°'^48 + i.ooo 

(83) 

Although Richardson and Zaki (92) observed discontinuity in the 

expansion line in log u vs. log £ plot, they attributed this to 

bridging of the particles from wall to wall and considered this effect 

to be absent at relatively high expansion. The discontinuities observed 
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Figure 19. The relationship between log u^/u^ and d/D^ ratio for spherical particles 
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Figure 20. The relationship between Reynolds number based on 
superficial velocity and porosity for fluidization data 
as reported by Bena et al. (16) 
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Table 6. Conç)arison of the asymptotic analytical solution for very 
dilute suspension of spheres in the creeping flow region 
(reproduced from Baraoea and Mizrahi (11)) 

Date Investigators Equation 

1949 Uchida u s 

^t 1 + 2.1(1 - e)1^3 

1958 Eappel ^ 
"t 1 + 1.5(1 - E)l/3 

1968 Leclair and Hamielec u 
1970 Gal-or \ " 1 + 1.8(1 -- e)l/3 

1959 Hasimoto u E 

^ ~ 1 + 1.76(1 - G)l/3 

1952 HcNown and Lin 
u _ e. 

1952 HcNown and Lin 
\ " 1 + 1.6(1 -- E)l/3 

1911 
1952 
1965 

Smoluchowski 
McNown and Lin 

Famularo and Happel 

u £ 1911 
1952 
1965 

Smoluchowski 
McNown and Lin 

Famularo and Happel "t ' 1 + 1.92(1 _ 

1965 Famularo and Happel 
u S 

1965 Famularo and Happel 
^t ' 1 + 1.79(1 - E)l/3 

1942 Burgers — = 
"t 1 + 6.88 (1 - e) 
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by Richardson and Zaki were much sharper than those observed by Bena et 

al. (16). Wilhelm and Kwauk (lOQ did extensive study on expansion 

of liquid and air fluidized systems. Their plots of Re(pud/Vi) vs. 

porosity also show some degree of curvature (Figure 10 in their paper). 

The curvature is more pronounced when the particle Reynolds number 

(Re^) is high. Due to this non-^linearity of log u vs. log e plots the 

actual value of n determined during fluidization experiments depends 

to some extent on the range of porosity over which measurements have 

been made and the distribution of experimental points over this range. 

Deviations from equation 79 occur with solid of high density and 

divergences are particularly marked with deep beds of particles of small 

size (37). Simpson and Rodger (97 ), Harrison et al. (58) and Richardson 

and Smith (91) have observed that lead shot fluidized by water gave 

rise to non-uniform fluidized beds- Hessett (60) also noted instabilities 

and non-uniformities in solid—liquid systems particularly in beds of 

narrow diameters. Cairns and Prausnitz (25) and Reuter (87) have 

published photographs of bubbles in solid-liquid fluidized systems. 

Richardson (88) quoted Unpublished work of Bailey who studied the 

fluidization of lead shots with water and reported the occurrence of 

non-uniformities but not well—defined bubbles. He showed, as seen in 

Figure 21, that the logarithmic plots of voidage against velocity are 

no longer linear and that the deviations from the line given by 

equation 79 increases with: 

(a) increase in bed weight per unit area 

(b) decrease in particle size. 
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Figure 21. Bed expansion for fluidization of 0.05 - 0.06 cm lead 
shot in water in 10. cm tube (88,p. 40) 
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The effect of particle density in determining the nature of 

fluidized systems has been established, and an increase in density 

generally results in less uniform fluidized systems (37, 39). 

The reasons for the deviation from equation 79 for reduction in 

particle size are not as clear as that for increased bed weight per 

unit area. One explanation for this observation is that part of the 

fluid takes a path of low resistance through the bed, remaining there 

for less than the average residence time and not therefore con­

tributing fully to the expansion of the bed. The effect of partial 

channelling will certainly be more marked with fine solids than with 

coarse solids since the ratio of the resistance of the bed to that of 

the channel will be much greater and a comparatively small channel will 

accomodate flow of a proportionately larger amount of fluid. 

Wen and Yu correlation and Richardson and Jeromino correlation 

Wen and Yu (106) and Richardson and Jeromino (89) assumed that 

at a given superficial velocity, the ratio of the drag force on a 

single particle in multiparticle system to drag force on a discrete 

particle to be some function of the porosity of the fluidized bed. 

Mathematically stated 

^ = f(e) (84) 



www.manaraa.com

92 

where 

Fjj = is the drag force on a single particle 

p.: 

Fj^ = drag force on a single particle in a nniltiparticle 

system = bouyant weight of the particle 

(TTd^/QCp - P)g . G 

3 
p(Pe - P)gd 

Ga ^—2 
li 

Wen and Yu (106) assumed the Schiller and Naumann equation for to 

be valid in the Reynolds number range from 0.001 to 1000. Then equation 

85 can be written as 

f(e) — , goy (86) 
18 Re + 2.7 Re-l"™' 

These authors used the data reported by Wilhelm and Kwatik (109), 

Richardson and Zaki (92), Lewis et al. (75) and data from their own 

experiments, and showed that 

f(e) = e-4'7 (87) 

Insertion of the function in Equation 86 leads to the prior equation in 

Table 5. Richardson and Jeronlmo (89) proceed as shown below to obtain a 
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relationship for function f(e): 

By differentiating equation 85 with respect to log e, the 

following equation is obtained 

d 10» ffe) '' S „ ^ 
d log e d log e d log e 

^ d log Cp d log Re _2 d log Re 

d log Re * d log £ d log £ 

Thus, 

d log f(£) 

d log Re _ d log £ 

• d log 

d log Re ^ ̂ 

For spherical particles with Re^ < 0.2. 

d log Cjj 
= -1 (from the slope of the C_ vs. Re curve) 

then 

d log Re ^ "D "t* 

d log Re _ _ d log f(£) 
d log £ d log £ 

for Re^ > 500 

d log C 
^ = 0 

d log Re 

then 

d log Re _ _ ^ d log f(£) 
d log £ ~ ~ 2 d log £ 
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further they assumed 

^ = c " o r ^ = e -  ( 9 0 )  

by differentiating equation 90 with respect to log e, one obtains 

for Re^ <0.2 n = 4.6 

for Re^ > 500 n = 2.3 

•  2-3 (93)  

Solving either equation 88b and 92, or 89 and 93 leads to the same 

expression 

f(e) = E (94) 

Therefore, it can be concluded that the function f( E) is independent 

of Reynolds number Re. 

Equation 94 shows close agreement with equation 87 which Wen and 

Yu (106) obtained by a different approach. 

Richardson and Jeromino (89) then proceeded to obtain a relation­

ship between n, and Re^ as indicated below: 
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From equation 88a, 94 

d log Re _ 4.6 
d log e d log C, 

d log Re 

= n 

+ 2 

(95) 

If the Schiller and Naumann equation for vs. Re^ relationship is 

assumed to be valid in the Reynolds number range 0.2 to 500 

S " "H" + 0-15 

log C„ = log 24 - log Re + log (1 + 0.15 Re*^*^^^) 

differentiating 97 with respect to log Re 

(96) 

(97) 

too 

d log C 

d log Re 
= -1 + 

too 

0.15(0.687)Re 
0.687 

too 

1 + 0.15 Re 
0.687 
't 00 

1 + 0.0470 Re 
too 

1 + 0.15 Re 
0.687 
too 

Substituting 98 in 95 

(98) 

n = 4.6 

2 -

1 + 0 .0470 

1 + 0 .15 J 
(99) 

Richardson and Jeronimo (89) compared the n values obtained from 

equation 99 and experimentally observed n values. For particle 

Reynolds numbers less than 30, both computed and experimental n values 

agreed closely but beyond Re^ > 30 computed values were higher than 
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experimental values. The disagreement between computed and experi­

mental values can be attributed to the following reasons. 

(1) The assumed relationship is not valid even when 

d/Dg, ratio is negligibly small. This effect becomes more 

pronounced in the turbulent region. 

(2) The drag coefficient was assumed equal to that for a 

isolated spherical particle in a quiescent medium of in­

finite extent. During fluidization, the scale and intensity 

of turbulence vary with bed voids ratio. It has been observed 

that under the effect of free stream turbulence and particle 

oscillation the drag coefficient changes drastically from 

standard drag curve. 

Zuber and Letan's correlations 

Zuber (113) theoretically analyzed dispersed two phase flow in the 

laminar flow regime and showed that Letan (72) extended 

the work of Zuber to the intermediate range of particle Reynolds number. 

By considering equations of continuity for continuous and dispersed 

phase and equations of motion for a suspension, she obtained the 

following equation 

where 

u = superficial velocity of fluidization 

Cjj = drag coefficient of a single spherical particle in an 

infinite fluid. 
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Then she incorporated two assumptions. 

(1) The drag coefficient of a spherical particle in a bed of 

like particles would be the same as would be observed in a 

fluid of the same apparent viscosity of the suspension. 

(2) The apparent viscosity of a suspension varies with 

porosity only. 

By utilizing Roscoe's (94) equation for apparent viscosity = 

__2 3 
Ue * and Schiller and Naumann equation for drag coefficient she 

obtained the following relationship 

(1 + 0.15 Re^°'*G7) . 

uT " 0.687 . 
{1 + 0.15 (Re^ . 

(101) 

Letan demonstrated equation 101 and Richardson and Zaki's 

empirical equation predict very similar values for the ratio ̂  ; 

but, deviation of porosity up to 0.1 for data of Mertes and Rhodes (80) 

and Wilhelm and Kwauk (109) was also observed. 

Samea and Mizrahi's correlation 

Bamea and Mizrahi (11) came up with extended définition^.for 

Reynolds number and drag coefficient which includes the porosity of the 

bed or the suspension. Using these extended definitions they were able 

to bring together data from 12 different sources into, a single 

correlation covering a wide range of particle Reynolds number. The 

correlation between the modified Reynolds number and the modified drag 

coefficient coincided with the standard drag curve relating the 

drag coefficient with Reynolds number for spheres. 
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They considered the hinderence effect in multi-particle systems 

can be broken down into the following: 

(1) The pseudo-hydrostatic effect. The average effective hydrostatic 

pressure gradient of the suspension is greater than that of the fluid 

alone, and consequently the effective bouyancy effect is greater, 

(2) The momentum transfer effect. The presence of other particles 

affects the mechanism of the transfer of momentum between each 

particle and the fluid medium. This effect is related, although not 

strictly equivalent to increase in 'apparent* bulk viscosity of the 

suspension, which becomes evident when the bulk suspension is sheared. 

This effect calls for a correction factor in terms of e. 

(3) The return flow effect. A settling cloud of particles causes 

an opposite motion of the fluid which develops drag forces on all 

particles and limits the flow field around the individual particles. 

This effect calls for another correction factor in terms of e. 

In the creeping flow range,they obtained a relationship for 

The drag force is increased by momentum transfer hinderance and the 

proximity of other particles. The former was postulated to have the 

same general form as the viscosity increase and is given by the 

following equation. 

= pg (1 - E) + pE (102) 

as follows : 

= U exp 
k^ (1 — e),' 

(103) 
1 + kgE 
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The return flow effect was assumed to increase the drag force 

by {1 + k_ (1 -

where 

k^, kg and kg are empirical constants. 

The drag force is given by. 

= 3wd - 1 + kgd - e) 
1/3 

exp 
k^(l - E) 

1 + 
h 

(104) 

The driving force or bouyant force F^, if the hydrostatic effect of 

suspension is taken into account, is given by 

Fg - ̂  : (P; - Pfc) 

2|-g (p^ - p) (e) (105) 

Equating 104 and 105, one obtains 

u d g(pg - p) 

ë " ÏÎBÛ 
{1 + kg(l - E)^/^ 

exp 
k],(l - £)• 

1 - kg E 
(106) 

Using published experimental data in the creeping flow regime, 

they showed 

kg = kg = 1.0 and k^ = 5/3 

The final form of the equation in the creeping flow regime was 

u 
1 + (1 - £) 1/3 

exp 
5(1 - £) 

3E 
(107) 
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They claimed equation 107 predicted the reported experimental data 

very well. 

The successful correlation in the creeping flow regime led them to 

search for modified definitions for Reynolds number Re^ and drag 

coefficient which would make the relationship of Re^ and 

coincide with the standard drag curve for a single particle. The 

interstitial velocity, u/e, was used as the characteristic velocity in 

the modified definitions of Re^ and 

The modified Reynolds number was defined as follows assuming k^, 

kg and kg remained unchanged. 

Re, = 
f . dp g .  d.p 

yexp 
5(1 - £) 

30 

(108) 

The drag coefficient is the ratio of drag forces to the dynamic 

pressure on the particle cross-sectional area. It should take into 

consideration the return flow effect and hydrostatic effect as follows: 

C F 

1 + (1 - Y PA. + (1 -

where 

= the modified drag coefficient 

Cjj = the drag coefficient on a single particle. 

ird^ 
Fg = drag force = -g- (p^ - p^)g 

TTd^ 
r (ps -
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2 
A = cross sectional area of the particle = 

,3 (p^ - p)ge 

S(j) 6 Ï Trd2 
J P — • \ {1 + (1 -

4d(Pg - p)g g.3 

"T"*' 3P *2 (1 + (1 _ 2)1/3} 

' 7 (1 + cf-

where 

Cjj = drag coefficient of an isolated particle^ 

f4d(pg - p)g'' 
u^ = terminal settling velocity = 

3PC^ 

1/2 

From equations 108 and 113, it is seen that as E + 1, Re^ Re^ 

and Cg. Using these modified definitions of Re^ and , 

Bamea and Mizrahi were able to bring together data from twelve 

different sources.into a single correlation as shown in Figure 22. 

Garside and Al-Diboimi's correlation 

Garside and AL-Dibouni (54) showed that at a particular expanded 

bed voidage the relationship between and Re^ can be correlated 

by a logistic cur-ve of the form 

U r -  A  
= C Re ® (112) 

B - u^ t 

where A and B are asymptotic values of at low and high particle 

Reynolds number Re^. Figure 23 shows relationship between u^ and Re^ 

at expanded bed voidages of 0.5, 0.7 and 0.9. 
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Figure 22. Correlation of Bamea and Mizrahi for fluidization and 
sedimentation of solid-liquid systems using modified 
definitions C^^ and Re^ (11) 
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Figure 23. The relationship between = u/eu^ and Re^ at constant 

expanded bed porosity for spherical particles (54 p. 209) 
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Using several experimenters' data for spherical particles and 

based on the values for A, B, C and m at porosities 0.4, 0.45, 0.5, 0.6, 

0.7, 0.8, 0.9 and 0.95, they proposed following empirical relationships. 

A = 

*1 OQ 

B = 0.8e ' E < 0.85 

B = E > 0.85 (113) 

C = 0.06 

m = £ + 0.2 or 1.0 

The proposition of a simple exponential correlation of the form 

4.14 
A = £ is somewhat self—defeating in that it reduces equation 112 

at very low particle Reynolds numbers to one similar to that of 

Richardson and Zaki (where right hand term of equation 112 approaches 

zero). As discussed previously, an equation of the form ̂  = £^ cannot 

adequately describe the expansion data at high porosities or sedi- i, 

mentation of very dilute suspensions (E > 0.9). This was borne out by 

4 14 
the fact £ • predicted a value of A which was 16 percent higher than 

the 0.699 which gave the best fit to the logistic curve for porosity at 

0.95 (54). 

Comparison between Bamea and Mizrahi's correlation and Garside and 

Al-Dibouni*s correlation 

The value of u/u^ in Bamea and Mizrahi's approach in the creeping 

flow region should be equal to the value of AE in Garside and Al-Dibouni's 

approach (because as Re approaches zero in equation 112, then u_ = A). 

• (1 + <1 ! 2)1/3) 
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On rearranging equation 111, one obtains 

1 + (1 - £) 
1/3 

1/2 
(115) 

At high particle Reynolds number both and are independent of 

Reynolds number and reach the same constant value as stated earlier. 

According to Gar side and Al-Dibouni, u^ in the high particle Reynolds 

number region is equal to B (because the denominator of the left hand 

side of equation 112 must approach zero at very high Re^ values, thus 

u^ = B). Therefore, from 115, 

B = 

1 + (1 - e) 1/3 

1/2 
(116) 

Table 7 shows the values of A and B determined from Bamea and 

Mizrahi's equation and the logistic values found empirically by Garside 

and Al-Dibouni (Table II in their paper). 

From Table 7 it can be seen that Bamea and Mizrahi's approach 

predicts lower values at low particle Reynolds numbers and higher 

Uj^ values at very high Reynolds numbers compared with values obtained by 

Garside and Al—Dibouni. From equations 114 and 116, it follows that 

A 
= exp 5(1 - £) 

3e 
(117) 

However, Garside and Al-Dibouni's values for A and B do not support 

this form of relationship. On the contrary, as shown in Figure 24, A 
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Table 7. Comparison of A and B values empirically obtained by Garslde and Al-Dibouni with 
those calculated using Barnea and Mlzrahl's method 

A (Low Reynolds Number) B (High Reynolds Number) 

Porosity 

Barnea 
& 

Mizrahi 
(Eq. 114) 

Garslde 
Al-Dibouni 

(Table II, 54) 

Barnea 
& 

Mizrahi 
(Eq. 116) 

Garslde 
& 

Al-Dibouni 
(Table II, 54) 

0.45 

0.50 

0.60 

0.70 

0.80 

0.90 

0.95 

0.032 

0.053 

0.114 

0.205 

0.333 

0.511 

0.636 

0.041 

0.044 

0.120 

0.251 

0.410 

0.624 

0.699 

0.497 

0.528 

0.588 

0.647 

0.710 

0.784 

0.833 

0.293 

0.345 

0.423 

0.503 

0.605 

0.755 

0.866 
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Figure 24. A new curve fit for A and B, the asymptotic values of u = u/eu^ at low and 

high particle Reynolds numbers, respectively 
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and B values can be made to fit the following equations 

B = Ï73 (118) 
[1 + 0.557 (1 - ] 

A = 570 rTï (119) 
[(1 + 0.557(1 - E)^/^]exp[^(^ ] 

from which it follows that 

I = exp ] (120) 

2 
Note that in this case B/A is obtained rather than the B /A in equation 

117. At present, it is not possible to give any reason for this 

apparent conflict or any means of resolving it. 

Garside and Al-Dibouni's alternative correlation 

Garside and Al-Dibouni (54) also presented an empirical correlation 

of the form 

"t 

where n is obtained from the equation 

In obtaining the above correlation, the straight line on the plot of 

log u vs. log £ was forced through minimum fluidization point (e 
mt 

u^). This probably accounts for the higher values of n in laminar and 

turbulent range compared to Richardson and Zakis values of 4.65 and 2.4 

respectively. 
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Richardson and Meikle's correlation 

Richardson and Meikle (90) using an approach based on fixed bed 

pressure drop equation, defined a modified Reynolds number Re^ and 

friction factor F as follows 

^®1 " Su(î - e) (122) 

gS (p - p)g 
F ^ (123) 

pu^ S 

where 

S = specific surface 

= -J for spherical particles. 

For Re^ < 1 and for expanded bed porosity e < 0.78, they showed that 

F = 3.36 Re^~l (124a) 

Thus, substituting 122 and 123 into 124a yields 

e (Pg P)S _ 2 2^ Swd - e) (124b) 

SPu^ 

rearranging 

.3 
U £ 

Î2- = 
(Pg - P)gd" 6.72(1 - £) 

I8y 

If particle Reynolds number Re^< 0.2, substituting equation 3 for 

the denominator of the left hand term leads to 
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In this section, several different equations to predict the 

velocity-voidage relationship of spherical particles were presented. 

Some equations are applicable only in a limited range of particle 

Reynolds numbers while some are applicable from very low particle 

Reynolds number to very high particle Reynolds number. The Richardson 

and Zaki equation is perhaps the most widely used equation due to its 

simplicity. Garside and Al-Dibouni (54) compared different equations 

available in literature for predicting the velocity-voidage relation­

ship of liquid fluidized systems. They concluded that their logistic 

approach gives the most accurate representation of bed expansion 

characteristics for solid-liquid system under conditions of fluidization 

and sedimentation. The author of this thesis feels that even 

though Garside and Al-Dibouni's logistic approach may seem to be more 

accurate, the empirical equation 113 proposed to estimate the logistic 

curve parameters A, B, C and m needs to be improved. 

Expansion Correlation for Non-Spherical Particles 

Richardson and Zaki (92), in'addition to their extensive work on 

spherical particles, fluidized four non-spherical particles of regular 

shape (cylinders, hexagonal prisms, cubes and plates). However, their 

work was restricted to the turbulent regime. They claimed the volu­

metric shape factor Z was better than sphericity for correlating the 

^n' values obtained. The 'n* values were found to fit the equation 

n = 2.7 (126) 
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where 

Z = Heywood volumetric shape factor. 

The validity of equation 126 is questionable since the n values 

ranged from 2.4 to 2.6 except for the plates, and the sphericities and 

Z values ranged from 0.806 to 0.874 and 0.517 to 0.694, respectively. 

It is possible that the difference in'n'values are statistically in­

significant. The plates had an'n* value of 2.1 which is much less than 

that for spheres. This author was not able to find any evidence in 

the literature to support this observation. 

Lewis and Bowerman (74 ) fluid ized series of catalyst granules in 

liquid hydrocarbons in the laminar range. They also analyzed the data 

of other workers in the transitional and turbulent regimes. It was 

observed that the expansion of non-spherical particles was higher than 

the expansion of spheres at a given upflow rate. They said this was 

because the drag force was proportional to the area of contact, and 

that non-spherical particles for same equivalent spherical diameter 

offer more area of contact thrin spheres. Therefore, they suggested 

that the product of sphericity and porosity could be used instead of 

the porosity, e, in the expansion correlations. They verified this for 

a material with sphericity of 0.92 in the transitional flow regime. 

However, this method of prediction for non-spherical particle is not 

well substantiated and was found to be unsatisfactory by Fan (^5 ). 

Whitmore (107) conducted sedimentation experiments with very small 

non-spherical particles of ground methyl-methacrylate in a solution of 

lead nitrate and glycerol. The particle size range was from 0.194 to 
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0.065 mm and the experiments were all in the laminar regime. He found 

that the 'n' values were higher than the 'n' values reported by 

Richardson and Zaki for spherical particles in the laminar regime. He 

hypothesized that a fraction of the fluid roughly proportional to the 

surface area of the solid material is carried with the particles. It 

makes the hydrodynamic volume of the particle greater than its dry 

volume so that the constituent particles behave as spheres of reduced 

density. 

Fouda and Capes (49) made use of the concept of immobile liquid 

trapped with solids to analyze expansion data of irregular shaped 

particles such as crushed silica and crushed steel and flat particles 

like mica and aliim-îTMim squares. They considered that the trapped immobile 

liquid effectively reduces the porosity. The effective porosity is 

volume. Further, it can be shown that the effective diameter and the 

density of the solid-fluid particle are given by the following equations 

which they presented: 

Eg = 1 - k^(l - e) (127) 

where k^ is the volume of solids plus immobilized fluid per unit solid 

(128) 

Pg + P(ki- 1) 
(129) 

e 

where 

d = average sieve diameter for equidimensional particles and 

d for flat particles, 
eq 
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which they termed as hydrodynamic volume fraction was 

obtained by an iterative procedure. For an assumed value of k^, the 

effective diameter d^, and density were calculated from equations 

128 and 129, respectively. The terminal settling velocity of a 

spherical particle with diameter d^ and density was calculated then. 

Using Richardson and Zaki's empirical relationship for n values in 

various flow regimes, the'n'value was calculated from the calculated 

terminal settling value. This Vvalue was compared with the'n'value 

obtained by plotting log u vs. log e^. If the"n'values did not match, 

value was changed and the calculations were repeated until the'n' 

values agreed reasonably well. The values ranged from 1.17 to 1.32 

for crushed silica while for flat particles like mica it was greater 

than 2 and was sometimes greater than 3. The hydrodynamic volume 

fraction, k^, exhibited no consistent trend with particle diameter, but 

overall particle shape or form and surface roughness did have some in­

fluence . 

The author of this thesis has some doubt about this method. Since 

is linear function of E as given by equation 127, both plots log u vs. 

log and log u vs. log £ will not produce straight lines for the 

same set of data. The plot of log u vs. log may show some degree 

of scatter from a straight line and therefore, the V values again 

will depend on the porosity range over which the measurements were 

taken. 

Jottrand (66) fluidized uniform sands with water in the laminar 

regime. His plot of log u versus log e resulted in series of parallel 
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straight lines with a'n'slope of 5.60. 

Chong et al. (30) also studied the effect of particle shape on 

hindred settling in creeping flow regime. They used spheres, cubic 

crystals of salt and plastic pellets, brick like sugar crystals and 

angular mineral crystals. They found that the Richardson Zaki 'n' 

slope varied from 4.8 for smooth spheres to 5.4 for cubes to 5.8 for 

angular particles. No consistent trend of"n'with d/D^ ratio was 

observed, and the empirical correction proposed by Richardson and Zaki, 

equation 80, over corrects for the wall effect. The intercept 

velocity u^ obtained by extrapolating log u versus log £ graph for 

hindered settling (e data in range 0.65 < £ < 0.9) to E = 1, was con­

sistently lower than the terminal settling velocity, u^^, for spheres 

and cubes, u^ for spheres approached u^, obtained by correcting u^ 

for wall effect by Ladenburg equation 27. 

Carvalho (28) plotted log u versus log £ and determined the u^ 

and 'n' for crushed anthracite coal of uniform sizes. He found that 

the terminal settling velocity u^ determined experimentally in the same 

column was approximately 25 percent lower than the u^. However, it 

should be noted that in his experiments the expanded bed porosities 

were less than 0.7, therefore the resulting Wand u^ values will be 

strongly influenced by initial segment of the expansion line. 

Wood (110) studied the expansion of garnet sand of 3 different 

sizes during fluidization with water at 16® C and 25® C. The sizes 

ranged from 0.274 mm to 1.351 mm. He showed that Richardson and Zaki 

"n'values can be correlated with Re^, Reynolds number based on intercept 
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velocity at e = 1. Further, he found a correlation between Re^ 

and the Galileo number for the garnet sand he studied. 

Gunasingham et al. (57) used the same approach of Wood to 

study the expansion uniform sized sand, anthracite, polystyrene, and 

ballotini. They proposed Richardson-Zaki *ti' values can be represented 

by the equation 

n = pRe^^ (130) 

where p and q were dependent on some property of the material. In 

addition, they considered that for all the materials investigated, Re^ 

can be approximated by the equation 

Re. = 0.599 Ga^'^^G (131) 

The following empirical equations were proposed for p and q 

p - pf 

q = (133) 
/s.0.73 
(-0") 

where 

d 
eq 

pg = density of the material. 

They observed that the general model of equation 131 did not 

predict as accurately as the specific model for each material, for it 

gave a maximum error of + 21 percent at 100 percent expansion. 

Although Gunasingham et al. (57) used equation 131 as the general 
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empirical equation for relating Re^ to Galileo number,.the specific 

equations for each material were also presented as follows ; 

Sand II 0.368 

Ballotini II &
 0.617 

Anthracite II 0.618 
g^O.538 

Polystyrene Re^ = 0.377 
g^O.582 

Wood obtained the following equation for the garnet sand for 

which Î2 ranged from 0.65 to 0.71. 

Re^ = 0.0702 

One cannot fail to realize the variation of the exponent on Ga 

and multiplying coefficient in these equations. They do not follow a 

systematic variation with shape factor 0 of the particle. These 

empirical equations yield a high correlations coefficient due to the 

fact that Galileo number Ga, is highly correlated with the terminal 

settling velocity of the particle u^. But u^ does not show any 

systematic variation with u^. 

Further, an equation of the form given in 134 is not satisfactory 

to cover a wide range of Galileo numbers, since even for spherical 

particles the relationship between Re^ and Ga depends on the Ga value 

as illustrated by the three equations required for different ranges of 

Ga for spheres as given in equation 77. 

Cleasby and Fan (32) showed that 'n' values for non-spherical 

particles like sand, anthracite and flintag could be estimated by 

multiplying the 'n' values for a spherical particle of the same 
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equivalent diameter by a correction factor which is a function of DSF 

or sphericity and the particle Reynolds number. Their equations were 

as follows: 

° ^spherical (^SF) 

a = -2.2715 (DSF)°'420 (Re^)-0'441 

(135) 

and 

- = -spherical-

e = -2.9237 . (Re^)-0'363 

where n spherical is obtained from Richardson-Zaki's empirical 

equation 81. 

Further, they proposed u^ can be obtained from the equations 

u. 

(136) 

= 0.90 (DSF)"°'2*1 (137) 

and 
"t 

= 0.91 ($)" C-400 (138) 

These two equations indicate that = u^ when DSF = 0.668 or 

^ = 0.790 or for spherical particles u^ ~ 0.9 u^. As discussed 

previously, the value of u^ depends to some extent upon the porosity 

range over which the expansion was carried out. Cleasby and Fan 

reported values greater than u^ for the non-spherical material 

except for the coarsest sand. Chong et al. (30) found that u^ was 

less than the free terminal settling velocity for cubes in the 



www.manaraa.com

118 

creeping flow region. Gimaslngham et al. (57) also reported 

greater than the free terminal settling velocity for the 

anthracite, polystyrene and sand they investigated. But all sizes of 

ballotini gave values less than free terminal settling velocities. 

It is not clear yet whether the particle Reynolds number or Galileo 

number has any effect on u^ or if the wide variability of u^ values reported 

in the literature is due to the inherent nature of log u vs. log e plot, 

which is not strictly linear. 

Beranek and Klumpar (19) suggested that the fluidization data of 

different shaped particles can be correlated by plotting 

1 - e " " ̂mf 

on logarithmic coordinates. Chong et al. (30) had limited success by 

plotting 

for correlating hindered settling data they obtained in the creeping flow 

regime for non-spherical particles. 

Effect of Particle Size Distribution on 

Expansion Correlations 

The expansions correlations,obtained either empirically or 

theoretically, generally are for unisized materials. In most of the 

practical applications where fluidization is employed,the medium is 

far from unisized but contains range of particle sizes. Many 
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investigators have studied the effect of particle size distribution 

on 'expansion correlations. 

In sanitary engineering practice,the total expansion of a filter 

bed during backwashing is determined by summing the expansion of 

different sizes, which are characterized by adjacent sieve sizes 

(26, 31, 44). Although no experimental evidence has been found in sani­

tary engineering literature to substantiate the validity of this 

procedure, evidence can be found in the work of Epstein et al. (4o), 

AL-Dibouni and Garside (4), Akkoyunlu (2) and Hoffman et al. (64). 

Epstein et al. (40) termed the summing approach a serial model. 

The overall porosity of the bed is given by 

1 - e • (139) 
n 

where 

= the porosity of the species i, when fluidized alone at a 

given superficial velocity 

= volume fraction of species i in the total solid (excluding fluid) 

Experimentally, they obtained the expansion line for both species 

of a binary mixture separately and for the binary mixture. In all, 20 

binary mixtures of same density and different diameters and different 

density and diameters were studied. The Reynolds number based on 

intercept velocity (u^) ranged from 0.034 to 3279. The predicted ex­

pansion curve based on equation 139 compared very well with that 

obtained experimentally for all binary mixtures. They found that the 
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serial model worked very well even when there was considerable 

intermixing. 

Hoffman et al. (64) also made similar studies with six binary 

mixtures and one ternary mixture of spheres of same density but 

different diameters. They also showed that serial model predicted 

overall expansion very well even if there was intermixing. 

An alternative approach assumes that a bed of mixed sized particles 

behaves as equivalent to single species which, in the case of constant 

density solids can be characterized by some mean particle diameter. 

Epstein et al. (40) termed this approach as a "averaging model". Wen 

and Yu (105) suggested that for a bed where intermixing is pronounced 

(particle diameter ratios < 1.3:1) use of an average diameter given by 

i i (140) 

1 

can be used to predict the expansion approximately. 

Epstein et al. (40) clearly demonstrated the inadequacy of the 

averaging model by showing that over the porosity range over which 

each single species plotted as a straight line in log u vs. log e plot, 

the binary mixture showed a sharp curvature at higher porosities towards 

the line representing the single species with higher terminal settling 

velocity. Further, they quoted the work of Wakeman and Stopp, who 

found that only when the two species had the same terminal settling 

velocities u^ or more precisely, intercept velocity u^, the binary 

mixture exhibited a straight line. 
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Al-Dibouni and Garside (4) used two models to predict the variation 

of size distribution with bed height during expansion of solid spheres 

of constant density. One was based on complete stratification and the 

other was based on diffusion mixing of solids. They found that 

although the mixing model was more successful than the stratification 

(serial) model in predicting the size variation particularly in beds 

containing narrow size ranges and regions where porosity of the ex­

panded bed was about 0.7, it required experimental values of eddy 

diffusion coefficients and was found to be mathematically complicated 

to solve. On the other hand, they found that the loss of accuracy 

involved in assuming perfect stratification is unlikely to warrant the 

extra effort required to solve the mixing model. 

Stratification and Intermixing 

Although no work was done ia this thesis regarding stratification 

and intermixing effects, a review of the literature woxild not be com­

plete without delving a little bit into this topic. Particles 

stratify or intermix in a medium consisting of different size particles 

during fluidization depending on the range of particle sizes involved 

and the density of the particles. 

Leva (73) quoted the studies of Verschoor and Andrieu which showed 

that even narrow size ranges of particles (0.015 cm to 0.0125 cm) of 

constant density are stratified at all porosities during fluidization. 

Wen and Yu (lOQ pointed out that a medium will be stratified if the 

range of particle sizes is larger than 1:1.3. Pruden (86) reported 

that the stratification of different size particles of same density 
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where 

is driven by the differences of bulk densities between sizes. He 

defined bulk density (p^) of a material of uniform density as: 

Pjj = (1 - £)Pg + pe = (1 - e)(Pg - p) + p (141) 

The bulk density difference between two sizes of particles is 

given 

Pbx ' Pby = (1 - V(Psx - P> - (1 - Ey)(Pgy - P) (142) 

X = large particle 

y = smaller particle 

Pbx» Pjjy = bulk density of x, y particles respectively 

Psx» Pgy = density of x, y particles, respectively. 

Pruden (86) showed that reduced bulk density $ could be used as 

criterion to determine whether intermixing will occur or not 

6 = (143) 

SX 

He noted the following with regard to mixing as a function of the 

value of 3 

0 ̂  3 ̂  0.01 mixing was observed. 

0.01 3 £ 0-04 partial segregation occurred. 

3 > 0.04 segregation with interface occurred. 

Wood (110) and Fan ( 45) found the difference in bulk density gave 



www.manaraa.com

123 

the correct tendencies towards intermixing during fluidization of dual 

media of different densities, but found it to be not as sensitive as 

desired for use as a predictive tool. 

The work of Furukawa and Ohmae (53) is of interest to anybody who 

is studying stratification or intermixing during fluidization. They 

performed miseibility experiments with binary mixtures of sand—sand 

and coal-sand using water as the fluidizing medium. The studies of 

particle diameter ratios in the range 2.31:1 to 1.38:1 indicated that 

segregation was only partial. For each sand-sand system studied, 

there was an extrapolated minimum velocity below which no segregation 
t 

occurred of the initially mixed systems. This mi-m'imTtn velocity 

increased with decreasing particle diameter ratios. 

Al-Dibouni and Garside (4) found that for spherical particles of 

constant density up to particle size ratio of 2.0, mixing occurred 

to a varying degree throughout the bed and was particularly intense 

when the voidage was about 0.7. For size ratios greater than 2.2, 

stratification dominated. 

Effect of Container Walls on the Expansion 

of Fluidized Beds 

The effect of container walls is negligible in most industrial 

operations but a delicate point in laboratory scale equipment. A 

number of workers (76, 81, 108) have drawn their attention to the 

problem of wall effect on fluidization. Some authors attempted to 

define a limit for the value of d/D^ ratio, below which the wall 
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effect is negligible. For (d/D^) > porosity of the 

fluidized bed is higher (other conditions being the same) or in other 

words the desired porosity is attained at a lower velocity. Wicke and 

Hedden (108) considered (d/D^)= 0.01 to be sufficiently small for 

wall effects to be negligible while Loeffler (76) found that at ̂  = 
T 

1/4.7 wall effects are still negligible. From the work of Fidleris and 

Whitmore (46) or McNown et al. (78), one finds that the wall effect on 

the settling of a isolated spherical particle depends not only on d/D^ 

ratio but also on the particle Reynolds number. Likewise, the wall 

effect on the expansion of a fluidized bed will also be expected to 

depend on d/D^ ratio and Re^. Table 8, prepared from the data of 

Loeffler, illustrates this phenomenon. The superficial velocity re­

quired to attain a certain porosity for the same material when fluidized 

in two different columns of diameter 2.477 cm and 5.508 cm was obtained 

by interpolation of experimental data. The ratio of velocities to attain 

same expanded bed porosities in two different columns is close to unity 

when Re^gg is very high. However, when the particle Reynolds number is 

low the same expanded bed porosity is reached in smaller column at a 

lower superficial velocity. 

Richardson and Zaki (92) attempted to correct for wall effect by in­

corporating a correction term as function of d/D^ in their empirical 

equation for obtaining 'n'. Although there is some disagreement over 

the magnitude of the wall effect correction proposed by Richardson and 

Zaki, they recognized the importance of pairticle Reynolds number in 

addition to d/D^ ratio for correcting for wall effects. At higher Re^, 

the d/D^ effect was absent (Equation 81). 
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Table 8. The velocities required to attain the same expanded bed porosity in two different 
columns (prepared from the data of Loeffler (76)) 

Rej.„ . 2769 R^too = 1529 .1 

•H = 0.1291 ^ = 0.061 
8 \ \ 

d 
Dï 

• = 0.1942 ^ = 0.0918 
T 

^ = 0.0394 
"T 

~ = 0.0177 
T 

FM 
cm/sec 

"2 
cm/sec Rau^/ug u^cm/sec Ug cm/sec Re=u^/u^ u^cm/sec Ugcm/sec R-U1/U2 

0.5 - - - 5.790 5.567 1.04 - - -

0.6 11.468 10.726 1.069 8.424 8.540 0.986 4.290 4.933 0.870 

0.7 15.185 15.578 0.974 11.872 12.193 0.919 7.188 7.631 0.942 

0.8 20,277 21.214 0.956 16.515 16.785 0.984 10.336 11.235 0.920 

0.9 27.783 29.099 0.955 23.377 23.369 1.00 - - -

= 47.10 RGt* = 2.71 

d 

^T 
= 0.1354 = 0.0615 

î T 
^ = 0.0394 

T 
^ = 0.0177 
U.J, 

^ = 0.0344 
"T 

= 0.0155 
T 

cm/sec 
/2 

cm/sec R="l/U2 u^cm/sec Ugcm/sec Re=Uj^/Ug u^cm/sec Ugcm/sec R=Uj^/U2 

0.5 - - - - - - - - -

0.6 2.758 3.108 0.887 - - - 0.272 0.341 0.797 

0.7 4.633 4.880 0.950 - - - 0.558 0.650 0.858 

0.8 7.261 7.576 0.958 1.247 1.461 0.85 0.981 1.136 0.863 

0.9 » _ 1.945 2.242 0.867 1.568 1.830 0.857 



www.manaraa.com

126 

Neuzll and Hrdina (81) conducted an extensive study on the effect 

of wall on the expansion of spherical particles. Unfortunately, their 

study was not presented in a manner that could be easily understood. 

In a region defined by (—). < (—) < they proposed the 
"t 2 "t "t 3 

following equation to obtain the porosity of the expanded bed 

e . V"-"" (144) 
(1-2.7 (d/D^)-^-^^) 

where Re^ ranged from 75.5 to 1795 and (d/D^) ratio ranged from 0.0454 

to 0.299. 

(—), and (—)_ are defined by the equations 
Ut Kg "t 

= (0.192 Ga°'548 _ i.oo) (145) 

(—). = 0.390 (d/D (146) 
Ut 1^3 i 

Further they established that the porosity of a loosely packed 

bed of spherical particles at minimum fluidization is given by the 

equation 

= 0.429 + 0.404 (147) 

It is fervently hoped that this chapter on literature review, 

although quite voluminous,sheds light on various aspects of 

fluidization. This prior knowledge will be of much use in studying 

the principal objectives of this dissertation. 
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EXPERIMENTAL INVESTIGATIONS 

Fluidization Apparatus 

General layout of the experimental system 

A schematic layout of the fluidized apparatus is shown in Figure 

25. Tank A was filled with water obtained from Iowa State University tap 

water supply. The water was pumped through one of the flow meters 

Fl, F2 and F3 depending on the flow rate to the fluidization column D. 

A small portion of the pumped water passed through the cooler C which 

was used to maintain the temperature at the desired level. The water 

flow through D and C was recirculated back to the tank A. The water was 

recirculated in the system until it was too dirty to be used. Water 

temperature was also controlled by a heater, but during the latter 

stages of the experiment the thermostat was not functioning and the 

heater was only used to bring the water temperature to close to 25® C 

at the commencement of the experiments. The flow rate through each 

flow meter was controlled by a needle valve connected to each flow 

meter. Water was pumped through only one flow meter at a time. Two 

pressure taps inserted in the fluidization column were connected to an 

inverted water manometer G to measure the head loss across the bed. 

Tank 

A 45 cm diameter and 70 cm deep cylindrical plastic tank was used 

in this experiment as a recirculation reservoir. 

Two centrifugal pumps with 0.5 and 2 horse power were used in the 
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Figure 25 

A - TANK F,, F 
B - PUMP ' 
C - COOLER 

D^. Dg - NEEDLE VALVES 

, F3 - FLOW METER 

D - FLUIDIZATION COLUMN 
6 - ISU TAP WATER 
H - HEATER 
G - INVERTED MANOMETER 

General layout of experimental system 
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system. For coarser and heavier material that required higher flow 

rates, the 2 HP pump was connected instead of the 0.5 HP pump. 

Cooler and heater 

The cooler was manufactured by Cordley Co., Michigan, Model CR2-5. 

The water to be cooled flowed through the heat exchanger coil in the 

cooler. The water temperature was adjustable between 24 and 26° C. 

The heater was made by Polyscience Corp., Niles, Illinois, Model 

73. The heater consisted of a thermometer, thermostat, a heating 

coil and a propeller. The heating coil and the propeller were immersed 

in the water; the coil functioned as a heat source while the propeller 

was used for circulating the water in the tank to make the temperature 

more uniform. After the thermostat stopped functioning, the heater 

was used only at the beginning of the experiment to raise the 

temperature of the water. Once the temperature was close to 25° C, 

by regulating the flow through the cooler, the temperature was kept 

near 25° C. 

Flow meters 

Three rotameter type flow meters F^, F^ and F^ were used. The 

range of flows, scale of the flow meter and the tube number of the 

meter are as follows. All were manufactured by the Fisher and Porter 

Company. 

Flow Meter Range Scale Tube Number 

F^ 0-2 gpm in gpm B5-15-10/70 

Fg 0-9.5 gpm in percent of B6-35-10/77 
maximum flow 
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Fg 0-30 gpm in percent of FP-2-27-9-10/83 
maximum flow Float T6-SVT-96 

Flow meters F2 and F3 were calibrated at 20° C and the flow 

meter F1 was calibrated at 24° C. The flow meters were calibrated by a 

weighing technique. The time to collect a given weight of water in a 

container was determined by the use of a stop watch. The weight of water 

collected varied depending upon the flow meter being calibrated. The 

inertia effects were eliminated by duplicating these effects at the 

start and finish of the timed weighings. A least square fit was used 

in determining the calibration equation for the flow meters. The 

equations are as follows: 

Meter Temperature Flow in gpm 

F^ 24" C 0.0689 + 0.885 (Reading) r^ = 99.9% 

F^ 20° C 0.102 + 0.0956 (Reading in %) r^ =100% 

F3 20" C 0.0354 + 0.291 (Reading in %) r^ = 100% 

Flow meters F^ and F^ are designed to function at high Reynolds number 

so they are reported by the manufacturer to be viscosity immune. 

Fluidization column 

The fluidization column is shown in Figure 26. The column consisted 

of several 10.16 cm inside diameter, 0.50 cm thick plexiglass cylinders of 

various height. The initial section of the column was 120 cm high. A 

5.10 cm high calming section shown in Figure 27 was located at the 

bottom and the top of the column was open to the atmosphere. Various 
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0.5 cm [0.16 cm 

PRESSURE TAP 

BOLTS 0-RINGS 

250 cm 

f20 cm 

PRESSURE TAP 

CALMING SECTION 
DETAILS FIGURE 27 

INLET 

Figure 26. Sketch of fluldlzatlon. column 
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10.16 cm 

0-ring 

1.8 cm #50 mesh 

1.2 cm 
1.3 cm 
glass 
marbles 

Inlet orifices 1.8 cm 

1.5 cm 
#10 mesh 

8 cm 

1.9 cm dia. inlet 

Detail of calming section 

/1.3 cm 

6.4 mm O.D 
copper tube % 

Brass hex head soldered 
] to tube 

\ column wall 

Detail of pressure tap 

Figure 27. Details of calming section and pressure tap 
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segments of the column were connected with bolted flanges and sealed 

by 0-rings. A 1.20 cm thick diffusing plate with 94 orifices, 3.2 mm 

in diameter was placed above the calming section, in order to dis­

tribute the upflow water uniformly. U.S. standard 50 mesh stainless 

steel screen was placed on top of the diffusion plate in order to pre­

vent plugging of orifices and possible loss of media. 

The calming section had a 1.9 cm inlet opening in the bottom 

flange. Â 10 mesh screen was placed inside this section and was filled 

with 1.3 cm diameter plexiglass marbles. The fluidization column had 

two pressure taps inserted on it. One was about 200 cm above the base 

and the other was just above the diffusing plate. The pressure taps 

were constructed of 6.4 mm copper tubes that were soldered into 1.3 cm 

brass hexhead plugs. The inner opening of the pressure taps was 

covered by a 50 mesh stainless steel screen. Details of the pressure taps 

and the calming section are shown in Figure 27. 

A cloth tape was attached to the column from the top of diffusing 

plate, and was extended about 140 cm in height above the plate. The 

bed height during fluidization was measured by this tape in cm. To 

ensure the cloth tape was not stretched, the cloth tape markings were 

checked against a metal tape marking in the mounted position. 

Mbnometer 

The two pressure taps on the fluidization column were connected by 

a tygon tubing to an inverted glass monometer. The water levels in 

the glass manometer tubes could be read to 0.1 in» from the scale on the 

monometer. 
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Sieves 

U.S. standard sieves were used to separate uniform sizes of 

material from wider size ranges. 

Air Permeability Apparatus 

Layout of the air permeability apparatus used to find the specific 

surface of the media are shown in Figure 28. The air supply was from 

the air supply line in the Iowa State University Sanitary Engineering 

Laboratory. 

While pressure drop measurements are taken, the stopcock valves 

D1 and D2 are open and D3 is closed. The needle valve N1 is used to 

regulate the flow of air through the column. The pressure drop across 

the bed was measured in the u-tube monometer. Water was used as the 

momometric fluid. 

Flow meter 

One rotameter type flow meter F^, was used to measure the flow 

rate of air through the column. This flow meter was calibrated 

against a wet test gas meter capable of measuring up to 190 SCFH. The 

wet test gas meter was connected to the outlet side of the flow meter 

in the air permeability apparatus. The outlet of the wet test gas 

3 
meter was open to the atmosphere. The time required to pass 10 ft 

3 
of air at high flow rates and 5 ft of air at low flow rates through 

the wet test gas meter was recorded. The temperature of the air leaving 

the wet test meter and the atmospheric pressure in the laboratory were 
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Figure 28. Layout of the ̂ Ir permeability apparatus 
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also recorded. At flow rates used in the calibration, the pressure 

differential across the wet test gas meter was not significant, and 

therefore was not considered in the subsequent calculations. 

The following example is presented to illustrate the conversion 

of measured flow rate at prevailing conditions to standard conditions at 

14.7 psiA and 70° F. 

Atmospheric pressure = 736.7 mm Eg 

Temperature of Air = 24° C 

Flow meter reading = 90 % 

3 
Volume of air passed = 10 ft 

Time to pass this volume of air = 3 m 26$ = 3.433 min 

The wet test gas meter measures the flow rate under prevailing test 

conditions. 

Flow rate at 736.7 mm Hg and 24° C _ 10 ft^ - o qt f^3, . 
at 90% of meter reading 4.344 min 

Manufacturer's full scale rating for this rotameter at 14.7 psiA 

and 70° F = 3.17 SCFM. 

To obtain full scale rating at the test condition, the following 

equation is used: 

Full scale at test conditions =(full scale at 14.7 psiA and) 
70° F 

/P T I standard Jtest 
X % X 
P T 
test standard 
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where 

^standard ~ Pressure at standard conditions 

P^est ~ Pressure at test conditions 

^standard ~ Absolute temperature at standard conditions 

T^est ~ Absolute temperature at test conditions. 

Full scale reading at 736.7 mm Eg and 24® C 

= 3-17 Tslr? % - 1-021 % 3-17 

= 3.235 ft^/min 

90% Reading = 0.9 x 3.235 = 2.91 ft^/min. 

Thus, in the above example, the manufacturer's full scale reading at 

standard conditions is correct. 

The results of this calibration at several flow rates between 20 

percent and 100 percent were within 2 percent of the manufacturers 

calibration for this rotameter at flow meter readings above 50 percent, 

and reached within 5 percent at lower flow rates. Therefore, the manu­

facturers calibration was accepted to be correct. 

The following example illustrates how the mass flow rate can be 

obtained by knowing the rotameter reading and the pressure and 

temperature at test conditions. 

Rotameter reading = 60 percent 

Pressure at test conditions = 741.4 mm Eg 

Temperature of air = 24® C 

— 3 O 
Density of dry air at 0® C and 760 mm Eg = 1.2929 x 10~ g/cm 
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Diameter of sample holding colmnn= 5.08 cm. 

Full scale reading at 741.4 mm Eg and 24® C 

= 3 17 X 760 (273.15 + 24) 
741.4 * (273.15 + 21.1) 

= 3.225 ft^/min. 

60 percent of full scale reading = 0.6 x 3.225 = 1.935 ft^/min 

3 
Superficial velocity of air flow in = x ^ 

•' mm 50 sec 

2.832 X 10^ 3 
— cm X 
3 TT 2 2 

1 ft^ 4 X (5.08)^ COL 

= 45.06 cm/sec. 

Density of air at 741.4 mm Hg and 24® C 

-3 741.4 273.15 
3 760 (273.15 + 24) 

cm 

= 1.1594 X 10 ̂  g/cm^ 

Mass flow rate G = pu = 1.1594 x 45.06 —^ x 
cm^ 

= 52.24 X 10 3 
2 

cm — sec 

Sample holding column 

The sample holder is a 5.08 cm inside diameter plexiglass column 

52 cm in height. The sample rested on 50 U.S. mesh stainless steel screen. 
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Materials 

Coarse sand, coarse and lighter coal, cube shaped polyvinyl plastic 

of three different densities, circular disc shaped metal punchings of 

brass, stain! ess steel and alumimm were used in the experimental in­

vestigations. The uniform sands used in the experiments were sand 5-6^ 

and 6-7^. Four different sizes of coal were prepared by sieving MS-20 

anthracite coal^. The uniform sizes of coal were 5-6, 6-7, 7-8, and 

8-10 U.S. mesh sizes. The circular disc shaped metal punchings were 

obtained from a hardware supplier^ in Chicago. The sizes of the 

punchings as given by the supplier is as follows; 

Brass 0.406 mm dia. 0.4039 mm thick 

Stainless steel 1.143 mm dia. 0.397 mm thick 

Aluminum 1.143 mm dia. 0.6096 mm thick 

The heavier cubic shaped polyvinyl plastic material, Kodak PET 

Thermoplastic Polyester 7352^, has a specific gravity of 1.36, while the 

lighter Kodak Polyester PETG 6763^ has a specific gravity of 1.26. The 

third polyvinyl material was obtained from Culligan Corporation and is 

called Culsan P® and has a specific gravity of 1.20. 

â 
Obtained from Northern Gravel Co., Muscatine, Iowa. 

^Obtained from GA Fuel Sales, a division of Blue Coal Corporation, 
Wilkes-Barre, Pennsylvania. 

Harrington and Kiag Perforating Co., Chicago, Illinois. 

^Eastman Chemical Products, Inc., Kingsport, Tennessee. 

^Culligan, U.S.A., Northbrook, Illinois 60062. 
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The metal punchings had an oil coating on them and had to be 

washed with detergent and water to remove the oil film. Metal punchings 

were later dried at 300° C to bum off any remaining oil coating. Dry, 

oil free metal punchings were sieved to separate unwanted materials. 

From the brass metal punchings, only those passing 35 mesh and re­

tained on 40 mesh were used in the subsequent studies. 

From stainless steel and a1 uminnm metal punchings, only those 

passing mesh 16 and retained on mesh 18 were used in the experiments. 

The polyvinyl plastics were also sieved to obtain particles of uniform 

sizes. From Polyester 7352 and Copolyester PETG 6763, only the material 

retained between meshes 7 and 8 were used in fluidization studies 

while with Cullsan P only the material retained between sieves 8-10 was 

of sufficient quantity to be used in the fluidization experiments. 

Experimental Procedure 

Sieve analysis 

Sieve analysis is a statistical process that is, there is always 

an element of chance as to whether a particle will or will not pass the 

apertures and hence there is no definite end point to sieving analysis. 

The end point must therefore be defined arbitrarily either by fixed 

time of sieving or by sieving until particles pass the sieve at a fixed 

rate per minute. 

The ASTM standard method (6) for sieve analysis of fine and 

coarse aggregates recommends that at the completion of the sieving 

operation, not more than one percent by weight of the residue on any 
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individual sieve will pass that sieve in one additional minute of 

hand shaking of that sieve. Otherwise, additional sieving of the 

nest of sieves is required. 

Fan (45) developed a procedure by combining ASTM standard method 

and British Standard Method to prepare uniform sized granular materials. 

The procedure is as follows: 

1. Load about 200 g of sample into selected nest of sieves. 

2. Sieve for 10 minutes with Combs Gyratory sifting machine. 

3. Remove the material from each sieve and clean the sieves. 

Then return the material to each sieve on which it had been retained. 

4. Test the adequacy of sieving by one minute hand shaking. If 

the weight of particles passing an individual sieve is more than 1 per­

cent of the weight of the residue on it, then repeat steps 2, 3 and 4. 

In preparing sand 5-6 and 6-7 sizes, the steps 2, 3, and 4 were 

repeated 3 times. Even then the standards were not exactly met. But 

after 30 minutes of machine shaking the material retained on meshes 6 

and 7 were assumed to be of uniform size. 

Fan (45) adopted 10 minutes of machine shaking and a further one 

minute of hand shaking to produce uniform size coal samples. Although 

this procedure did not meet the standards, longer shaking time could 

potentially degrade the size of the coal media. The same procedure 

was adopted in preparing the coal samples 5-6, 6-7, 7-8, and 8-10. 

Polyvinyl plastic material and circular disc shaped metal 

punchings were also sieved. With these materials, only those materials 

retained between two adjacent sieves were taken and the rest discarded. 
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This ensured these materials are also of uniform size. 

Equivalent spherical diameters 

The mean equivalent diameter of a sphere (d^^) is defined as the 

diameter of a spherical particle of the same volume as the irregular 

particle being considered. The d^^ was obtained by counting about 

100 dried and cooled representative grains of each size and weighing 

them. The equivalent spherical diameter of the particle was calculated 

as follows: 

% -
where 

Yg = particle specific weight 

w = total weight of N particles 

N = number of particles. 

Density 

The densities of sand, coal, metal punchings and polyvinyl 

materials were determined by a water displacement technique using a 50 ml 

pycnometer bottle. All materials were washed and dried at 100° C for 3 

hours as a preliminary procedure prior to the test. When determining 

the density of coal, the weight W was determined at different times 

after shaking the bottle periodically to eliminate any air bubbles 

which had collected due to water filling the pores in the coal (W = 

weight of pycnometer + coal after soaking for a time + water required to 

fill the pycnometer). The weighings for W continued until two 

successive weighings did not differ significantly. For all materials. 
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two measurements of density were made and the mean was reported as the 

average density for the material. 

Unhindered settling velocity 

The unhindered settling velocity was measured by dropping 

individual particles in a plexiglass column which was about 150 cm in 

height and 14.0 cm in diameter. Two marks, 100 cm apart were made on 

the column, the first mark was 27 cm below the water surface. The 

particles were allowed to soak in water overnight to ensure they are 

fully wetted before the test. Representative grains from each uniform 

sized material were dropped into the water individually and the 

travelling time between those two marks was recorded. For each uniform 

sized material, the settling time of about 50 grains was recorded and 

the average unhindered settling velocity was computed from these data. 

The settling velocities were measured at two different temperature 

ranges, one at room temperature which ranged from 20" C to 24° C and 

another at around 36® C. The higher temperature settling velocity 

measurements were made in the digestor room in the Sanitary Engineering 

Laboratory. 

Porosity 

The porosity of the unexpanded bed was measured in the fluidization 

column by allowing the media to freely settle from a higher degree 

of expansion when the upflow water was shut off suddenly. The free 

settling is assumed to prevent packing among the particles and thus 

the porosity obtained would be a loose bed porosity. Before the 

material was introduced into the fluidization column, it was washed 



www.manaraa.com

144 

and dried at 105° C for 4 hours, and then was allowed to cool to 

room temperature. The dry media were then weighed to the nearest 1.0 

gram and introduced into the fluidization column and was allowed to 

soak in water for about 15 hours. The fully wetted media were then 

fluidized to maximum possible expansion (usually about 300 percent 

except for brass and stainless steel metal punchings) for about 5 

minutes, and the valve was shut off suddenly. After all the particles 

had settled freely the height of the settled bed was recorded. From 

this height the total volume occupied by media and water was calculated. 

The initial porosity was calculated using the following equation: 

W/Y 

where 

w = the weight of media 

c^ = the volume occupied by media and water (i.e. the column 

volume up to the top of the media) . 

Fluidization experiments 

These experiments were made in the fluidization column pre­

viously described. The media of known weightwere placed in the column 

and soaked for 15 hours. The media were then backwashed for about 5 

minutes to get rid of air bubbles entrapped in the media and wash out 

any fines in the media. Expanded bed height readings were not made until 

the bed had stabilized. 

A summary of observations made during an upflow experiment is as 

follows: 
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a. Flow rate in gpm 

b. height of bed cm 

c. pressure drop across the bed (in. of water) 

d. temperature of water in recirculation reservoir (® C). 

Some problems were encountered during these experiments. The 

water temperature increased slowly during fluidization because the 

cooler was not adequate to offset the heat input of the pump. If the 

water temperature rose close to 26° C, some water was removed from the 

recirculation reservoir and cold water was introduced. This helped to 

bring down the temperature. The average temperature was maintained 

between 24.5 and 25.5* C. At very low upflow rates some degree of 

channelling was observed with all the materials. Generally, the upper 

surface of the fluidized media could be easily observed at lower 

degrees of expansion but became increasingly difficult at higher ex­

pansions. With brass and stainless steel metal punchings, the 

interface was oscillating violently at moderately high flow rates 

although the expansion was not very much (about 30 percent). With 

lighter materials such as plastics and coal at high expansion, 200-300 

percent, the interface of the fluidized bed was not steady at a 

particular height, but rather oscillated about 5 cm on either side of 

the mean value (the visually estimated mean value was recorded). 

Air permeability experiments 

These experiments were conducted to determine the specific surface 

of materials used in the fluidization experiments. The experiments were 

conducted in the air permeability apparatus described previously. 
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Sufficient quantity of material that would produce a fixed bed height 

about 25 cm in the sample holding column, was weighed accurately to 

0.1 g and was introduced into the column. For the brass metal punchings, 

since the material was fine, a fixed bed height of about 15 cm was 

used. Pressure drop and air flow rate data were recorded at two 

different fixed bed porosities. Initially, the air was sent through 

the column in an upflow mode and the bed was expanded to a loosest 

state and the air supply was shut off suddenly, allowing the particles 

to fall freely to a fixed state. The fixed bed in this condition was 

termed a loosely packed bed. Air was then sent in a downflow mode 

through the bed and the pressure drop across the bed was measured with 

air flow rate, starting with highest air flow rate at the beginning and 

decreasing air flow rate in steps. The same bed was then tapped on 

the side of the column to produce a tightly packed fixed bed. The 

fixed bed height was recorded and the air flow rate and corresponding 

pressure drop was also recorded for number of air flow rates for this 

fixed bed condition. The air flowed through the column and rota­

meter discharged into free atmosphere. The temperature of the exiting 

air was measured with a thermometer. The atmospheric pressure in the 

laboratory was recorded at the beginning and end of each run. The 

variation of pressure drop in the empty tube with air flow rate was 

also recorded. In the subsequent calculations, to determine the pressure 

drop across the bed, the empty tube pressure drop corresponding to the 

same mass flow rate was subtracted from the observed pressure drop. The 

empty column pressure drop versus mass flow rate is shown in Figure 29 . 
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Illustrative Calculations 

Average particle size determinations 

From sieve analysis: The arithmetic mean or geometric mean of 

two adjacent sieve openings can be considered as the average size 

and are denoted by d^ and d^^, respectively. For example, the average 

size for the coal between 7 and 8 mesh sieves is calculated as 

d = 0-283 + 0.238 ^ o.2605 cm 
m 2 

d_ = /(0.283) (0.238) = 0.2595 cm gm 

Equivalent diameter of a sphere (d ) 
eq 

Number of particles = 111 

Total weight of particles = 1.5811 g 

3 Density of particles = 1.485 g/cm 

Mean equivalent diameter . , 1/3 
fm m • OOjLaL JL 

Of a spnere = ^ ÏÏI ̂  

= 0.269 cm. 

Unhindered settling velocity of 7-8 mesh MS-20 coal 

Number of particles dropped = 50 

Distance of timed fall = 100 cm 

Avg. temperature of water = 20.1" C 
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Observed settling time of single particle (sec) 

15.0 12.5 10.0 11.5 12.1 15.7 11.0 13.5 10.1 8.8 

12.2 9.9 12.5 8.8 12.0 9.0 12.0 11.5 10.5 15.0 

14.0 10.0 10.5 12.3 11.0 13.8 11.8 9.7 13.8 12.1 

8.0 13.7 11.0 14.4 12.9 14.0 10.9 10.0 13.8 13.9 

10.8 9.5 9.5 8.4 10.2 11.4 9.4 10.5 11.7 10.0 

Mean time of fall = 11.53 sec 

Standard deviation =1.91 sec 

Mean velocity of fall = 8.673 (cm/sec) 

Dynamic shape factor (DSF) and hydraulically equivalent diameter shape 

factor (fl). 

Measured settling velocity (u^) at 20.1° C = 8.76 cm/sec 

3 • Density of water at 20.1® C = 0.998 g/cm 

Viscosity of water at 20.1° C = 1.022 cp 

2 ^&(Ps ~ ^eq 
S^®t<» ; = 118474 

(from vs. Re^ for 

spheres presented in =467.3 
Appendix I) 

Ujj^=]i.Re^eo/P-<^eq = 17.406 cm/sec. 

a + b = 1 

^ 
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b = 0.998 

DSF = a(^) + b M 
N ^ 

= 0-002 (|̂ ) + 0.998 

= 0.249. 

4g(p - p) 
Cjj/Ret„ = — 3 = 0.009803 

3p 

(from C^/Re^^ vs. Re^^relation-

ship for spheres presented in 
Appendix I) = 109.5 

^h = = 0-1265 

Hydraulically equivalent diameter shape factor 

= fh_ ^ 0.1265 
- d^g - 0.269 

= 0.470 

Sphericity 

Two methods were used to calculate the sphericity. Both the 

methods were based on Ergun equation for calculating pressure drop for 

flow through fixed bed. In the water fluidization experiments, for the 

unexpended bed, the sphericity was back calculated from Ergun equation 

at each upflow velocity. A mean value for sphericity was calculated 

from these values. In the air permeability method, the sphericity was 

calculated by two approaches. 
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1. Back calculation from Ergxm equation at each air flow rate. 

AP 2. From the intercept of the plot of ^ vs. G of the air 

permeability data. 

Equation 45a can be rearranged as follows: 

G = pu 

If ^ is plotted against G 

2 
intercept = 4.17 u 

£ 

slope = 0.29 S ~ 

(a) From fixed bed data of fluidization experiments for 7-8 mesh: 

Porosity of fixed bed = 0.5579 

3 Density of water at 25® C = 0.997 g/cm 

Viscosity of water at 25° C = 0.008904 poise 

Bed depth = 41.5 cm 

Pressure drop = 1.905 cm of water 

Superficial velocity = 0.5446 cm/sec. 

^ = 150 U 2^) (|) u + 1.75 3 (|) . pu^ 

1.905 X 0 997 X 981 . , o.oo89 (0.5446)%! 
(0.5579)3 
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+ 1.75 (1-0-5579) (0 997) (0.5446)^ | 
(0.5579) ° 

44.94 = 0.02277 + 0.2198 S 

+ 9.653 S - 1973.6 = 0 

S = 39.6 cm ^ 

Sphericity * - = 3,., ^ 0.269 ' 
eq 

Mean sphericity = 0.533 

Number of data points = 9 

Standard deviation = 0.0276. 

(b) Sphericity from air permeability method for the same material 

the plot of ^ vs. G for loosely packed MS-20 coal 7-8: 

Fixed bed porosity = 0.535 

Viscosity of air at 23° C = 0.018 cp 
2 

Intercept = 4.17p S^ ~ = 1.195 

° a"o!L)^ ' K 0.018 X 10-2 

= 1127.5 cm ^ 

S = 33.58 cm"^ 

Sphericity = ^ 0,259 = 
eq 
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Slope = kg 

• 1 1 Itj - slope (1 _ g) s 

. 41.5 iS^ , ̂  = 0.407 
(1-0.535)^ 

In addition, sphericity was also calculated from back calculation 

from Ergun equation as explained in section (a). 

Average sphericity from seven measurements = 0.585 

Standard deviation = 0.0165 

Porosity of fixed bed 

i Weight of 7-8 mesh coal in column = 2374.0 g 

ii Fixed bed height after expansion 
and free settling = 44.7 cm 

2 iii Cross-sectional area of column = 81.07 cm 

iv Total volume of sand and water 
(ii) X (iii) = 3623.83 cm^ 

3 
V Specific weight of coal = 1.485 g/cm 

vi Volume of coal (i)/(v) = 1598.65 cm^ 

Fixed bed porosity 1 - = 0.558 

Minimum fluidization velocities 

Minimum fluidization velocities for each material was calculated 

by equations 71, 74, 75, 78. 

Wen and Yu - Equation 71: For mesh 7-8, MS-20 coal 

Sphericity ip = 0.533 
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Porosity at minimum fluidization velocity = 0.5579 

Galileo number Ga, at 25° C = 117062 

1.75 Re / 150(1 -

18.907 Re^^ + 1344.27 Re^^ - 117062 = 0 

Re^^ + 71.1 Re^ - 6191.46 = 0 

-71.1 + /(71.1)2 + 4(6191.46) 
" 2 

= 50.79 

= êq ""mf 

V = 0?997 X 2:221*°' = 1-688 cm/sec 

Wen and Yu, equation 74: 

Re^ = /(33.7)^ + 0.0408 Ga - 33.7 

, 1/2 
^®mf " f(33.7)^ + 0.0408 (117062)} - 33.7 

= 43.19 

p*a 
eq 
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Bena et al. method, equation 75: 

_ 0.00138 Ga Ga < 1.06 x 10^ 
mf " (Ga + 19)0.11 Re^ < 41.0 

and 

Since 

Re^ = 0.038651.06 x 10^ < Ga < 2.13 x 10® 

Ga = 117062 

Re^ = 0.03865 x (117062)°*^°^ 

= 43.48 

V - ̂  = -"3 Wsac 

Beranek method, equation 78: 

B = 
O gUCPg - p) 

Settling velocity of a sphere with diameter = 0.269 cm at 25° C, u^ 

17.77 cm/sec 

B .  (17-77)3 ^ (0.997)2 1314 

° 981 X 0.008904 (1.485 - 0.997) 

since B > 10^ o 

"mf 

"t 
= 0.09 + 0.05 

Settling velocity u^,adjusted for 25° C = 8.89 cm/sec 

u^ = 0.09 X 8.89 = 0.800 cm/sec. 
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Adjustment of unhindered settling velocity for temperature 

In order to compare the intercept velocity u^ at e = 1.0 with 

unhindered settling velocity u^, it is necessary to correct settling 

velocity which were measured at temperatures other than at 25° C. 

Settling velocity measurements were made at temperatures ranging from 

19.8 to 24.8° C. An assumption was made that DSF will not change 

appreciably in the temperature range from 20° C to 25° C. This 

assumption was checked later by making settling velocity measurements 

at near 36° C. 

The measured velocity was adjusted to 25° C as follows; 

The DSF corresponding to the test conditions was calculated as 

shown ±a the DSF calculations. Assuming that DSF at 25° C has the 

same value at 25° C, the settling velocity at 25° C was calculated from 

the definition of DSF. 

DSF of 7-8 mesh MS-20 coal at 20.1° C = 0.249. 

Settling velocity of a equivalent volume sphere at 25° C 

u^ = 17.80 cm/sec. 

RCjj = 536.46 

. at 25° C 
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b = 1 - a = 0.998 

Since a is very small 

DSF = M 
"n 

= /DSF X Ujj 

= /0.249 X 17.80 = 8.89 cm/sec. 

This can be compared with the of 8.673 cm/sec at the test temperature 

of 20.1" C. 
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RESULTS AND ANALYSIS 

Results 

The results are first presented in a tabular form in this section. 

These data will be discussed in the analysis section which follows. 

Sieve analysis 

Sieve analysis was carried out on the materials which were previously 

separated into uniform size fractions to test the adequacy of sieving 

operations. A representative sample of each material was resieved on the 

gyratory shaking machine for 5 minutes followed by 1 minute of hand 

shaking. Table 9 gives the results of the sieving procedure. The weight 

of the representative sample was 200 grams for each size. From Table 9 

it is apparent that the preparation sieving was satisfactory. 

Size determinations 

The equivalent spherical diameter of each uniform sized material was 

determrijied by the count and .weigh procedure as described previously. 

Table 10 shows the equivalent diameter of a sphere, d^^, arithmetic 

average of adjacent sieves, d^, and the geometric mean of the adjacent 

sieves d gm 

Densities 

Table 11 gives the results of the density determination for all the 

material used in the experiments. 

Porosities 

Fixed bed porosities of materials in the fluidization column as 

determined by the column technique are shown in Table 12. 

Settling velocities 

The experimentally determined terminal settling velocity for all the 
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Table 9. Sieve analysis of uniform sized material 

Sieve Sieve Opening Wt. Retained % Retained 
No. g g 

Brass metal punchings 35-40 

30-35 0.59-0.50 3.0 1.5 
35-40 0.50-0.42 196.0 98.0 
40-45 0.42-0.35 1.0 0.5 

Stainless steel punchings 16-18 

14-16 1.41-1.19 4.0 2.0 
16-18 1.19-1.00 193.0 96.5 
18-20 1.00-0.84 3.0 1.5 

Aluminum punchings 16-18 

14-16 1.41-1.19 2.0 1.0 
16-18 1.19-1.00 197.0 98.5 
18-20 1.00-0.84 1.0 0.5 

Sand 5-6 

4-5 4.76-4.00 2.0 1.0 
5-6 4.00-3.36 175.0 88.8 
6-7 3.36-2.83 20.0 10.2 

Sand 6-7 

5-6 4.00-3.36 17.0 10.2 
6-7 3.36-2.83 150.0 89.8 
7-8 2.83-2.38 

MS-20 Coal 5-6 

4-5 4.76-4.00 8.0 4.2 
5-6 4.00-3.36 171.0 89.5 
6-7 3.36-2.83 12.0 6.3 

MS-20 Coal 6-7 

5-6 4.00-3.36 14.0 7.1 
6-7 3.36-2.83 171.0 87.2 
7-8 2.83-2.38 8.0 4.1 
8-10 2.38-2.00 3.0 1.6 

MS-20 Coal 7-8 

6-7 3.36-2.83 9.0 4.5 
7-8 2.83-2.38 180.0 90.5 
8-10 2.38-2.00 10.0 5.0 
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Sieve 
No. 

Sieve Opening 
mm 

Wt. Retained % Retained 

MS-20 coal 8-10 

6-7 
7-8 
8-10 

3.36-2.83 
2.83-2.38 
2.38-2.00 

Poly PET 7352 7-8 

5-6 
6-7 
7-8 
8-10 

4.00-3.36 
3.36-2.83 
2.83-2.38 
2.38-2.00 

Poly PEIG 6763 7-8 

5-6 
6-7 
7-8 
8-10 

Chillsan P 8-10 

5-6 
6-7 
7-8 
8-10 
10-12 

4.00-3.36 
3.36-2.83 
2.83-2.38 
2.38-2.00 

4.00-3.36 
3.36-2.83 
2.83-2.38 
2.38-2.00 
2.00-1.68 

18.0 
170.0 
10.0 

3.0 
8.0 

178.0 
11.0 

2 . 0  
5.0 

180.0 
13.0 

1.0 
4.0 
18.0 

172.0 
5.0 

9.1 
85.6 
5.3 

1.5 
4.0 

89.0 
5.5 

1.0 
2.5 

90.0 
6.5 

0.5 
2 . 0  
9.0 

86.0 
2.5 
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Table 10. Equivalent volume diameter of sphere (d^ ), arithmetic 
average of adjacent sieves (d^^) and géométrie mean of ad­
jacent sieves (dgm) of uniform sized materials 

d d d • leq m gm 
Material cm cm cm 

Brass 35-40 0.0475 0.0460 0.0458 

Stain!ess steel 16-18 0.0956 0.1095 0.1091 

Aluminum 16-18 0.1090 0.1095 0.1091 

Sand 5-6 0.3749 0.3680 0.3666 

Sand 6—7 0.3497 0.3095 0.3083 

MS-20 Coal 5-6 0.3865 0.3680 0.3666 

MS-20 Coal 6-7 0.3167 0.3095 0.3083 

MS-20 Coal 7-8 0.2690 0.2605 0.2595 

MS-20 Coal 8-10 0.2339 0.2190 0.2182 

Poly PET 7352 7-8 0.3085 0.2605 0.2595 

Poly PETG 6763 7-8 0.3040 0.2605 0.2595 

Cullsan P 8-10 0.2693 0.2190 0.2182 



www.manaraa.com

162 

Table 11. Densities of the materials used in the experiments 

3 Material Density (g/can ) 

Brass 35-40 8.550 

Stainless steel 16-18 7.780 

Aluminum 16-18 2.734 

Sand 5-6 2.646 

Sand 6-7 2.640 

MS-20 coal 5—6 1.485 

MS-20 coal 6-7 1.485 

MS—20 coal 7—8 1.485 

MS-20 coal 8-10 1.485 

Poly PET 7352 7-8 1.360 

Poly PETG 6763 7-8 1.270 

Cullsan P 8-10 1.200 
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Table 12. Fixed bed porosities of the material determined by the 
column technique - at 25® C 

Dry Wt. of Fixed Bed Porosity 
Material Media, g Height cm . 

Brass 35-40 11383.0 28.6 0.426 

Stainless steel 16-18 10091.0 28.8 0.444 

Alumintim 16-18 4295.0 34.7 0.442 

Sand 5—6 4914.0 42.0 0.455 

Sand 6-7 3659.0 31.2 0.452 

MS-20 coal 5-6 2387.0 45.0 0.559 

MS-20 coal 6-7 2369.0 44.6 0.556 

MS—20 coal 7—8 2374.0 44.7 0.558 

MS-20 coal 8-10 2507.0 47.7 0.563 

Poly PET 7352 7-8 2516.0 38.7 0.410 

Poly PETG 6763 7-8 2225.0 40.3 0.440 

Cullsan P 8-10 2217.0 41.6 0.429 
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material is given in Table 13. The temperature, mean settling time, 

standard deviation of settling time are also tabulated in Table 13. The 

adjusted settling velocities at 25® C are presented in Table 14. 

Dynamic shape factor (DSF) and hydraulically equivalent diameter shape 
factor (fl) 

The two hydraulic shape factors were calculated for each material at 

the two different temperatures at which settling velocities were 

determined. The results are tabulated in Table 15. 

Sphericity 

Sphericities of the material used in the experiments were calculated 

by two methods. In the first method,the pressure drop versus superficial 

velocity data of the fixed bed of the fluidization experiments were used 

to calculate sphericity using Ergun equation. All the data points on the 

rising limb of pressure drop versus superficial velocity plot were 

used in the sphericity calculations, including those obtained during 

increasing flow rate as well as decreasing flow rate. 

The actual porosity of the bed at each velocity was used in the 

calculation since the porosities were slightly different for expanding 

and contracting flow data for the same material. 

The sphericities were also calculated using air permeability 

method. In this method,the pressure drop versus superficial velocity 

data were obtained for two different fixed bed porosities. One was 

under loosely packed conditions and the other under tightly packed 

conditions. For each fixed bed porosity the sphericity was calculated 

by two methods. One was similar to the method described for fixed bed 
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Table 13. Settling velocities of uniform size materials 

Mean Time Mean :Settling 
No. of Particles to Travel Std. • 'Velo<ilfc,y 

Material Temperature Observed 100 cm,-sec. Deviation sec. cm/sec. 

Brass 35-40 23.3 50 5.50 0.02 18.18 
36.0 30 5.13 0.09 19.49 

Stainless steel 16-18 23.3 40 4.49 0.12 22.27 
36.0 30 4.3,6 0.18 22.93 

Aluminum 16-18 24.9 50 7.27 0.15 13.76 
36.3 25 6.97 0.11 14.35 

Sand 5-6 23.4 50 3.65 0.30 27.40 
36.6 50 3.48 0.30 28.73 

Sand 6-7 22.5 50 3.66 0.28 27.32 
36.7 50 3.62 0.29 27.62 

MS-20 coal 5-6 19.8 50 9.34 0.79 10.71 
36.3 30 8.64 0.89 11.57 

MS-20 coal 6-7 19.8 50 10.29 1.61 9.72 
36.5 53 9.49 1.01 10.54 

MS-20 coal 7-8 20.1 50 11.53 1.91 8.67 
36.6 50 11.66 1.50 8.58 

MS-20 coal 8-10 20.3 50 12.24 1.73 8.17 
36.6 50 12.15 1.59 8.23 

Poly PET 7352 7-8 23.4 50 8.00 0.42 12.50 
36.6 50 7.91 0.38 12.64 

Poly PETG 6763 7-8 24.7 50 9.99 . 0.68 10.00 
36.5 50 10.04 0.50 9.96 

Cullsan P 8-10 24.7 50 13.39 0.74 7.47 
36.7 50 12.95 0.88 7.72 
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Table 14. Settling velocity adjusted to 25® 

Material Settling Velocity (cm/sec) 

Brass 35-40 18.49 

Stainless steel 16-18 22.48 

Aluminum 16—18 13.80 

Sand 5-6 27.41 

Sand 6-7 27.31 

MS-20 coal 5-6 10.81 

MS—20 coal 6—7 9.96 

MS—20 coal 7—8 8.89 

MS-20 coal 8-10 8.37 

Poly PEr 7352 7-8 12.65 

Poly PETG 6763 7-8 10.04 

Cullsan P 8-10 7.52 

^Settling velocities were adjusted assuming the DSF at 
temperature of measurement (near 25° C) is same as the DSF at 
25® C, as shown in the illustrative calculations. 
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Table 15. Dynamic shape factor (DSF) and hydraulically equivalent 
diameter shape factor (SÎ) 

Material Temp. DSF £2 

Brass 35-40 23.3 0.693 0.849 
36.0 0.676 0.855 

Stainless steel 16-18 23.3 0.350 0.572 
36.0 0.336 0.538 

Aluminum 16—18 24.9 0.543 0.759 
36.3 0.533 0.729 

Sand 5-6 23.4 0.407 0.505 
36.6 0.446 0.503 

Sand 6-7 22.5 0.436 0.543 
36.7 0.444 0.513 

MS-20 coal 5-6 19.8 0.217 0.404 
36.3 0.236 0.386 

MS-20 coal 6-7 19.8 0.243 0.448 
36.5 0.239 0.427 

MS—20 coal 7—8 20.1 0.249 0.470 
36.6 0.211 0.410 

MS—20 coal 8—10 20.3 0.273 0.492 
36.6 0.241 0.452 

Poly PET 7352 7-8 23.4 0.575 0.702 
36.6 0.524 0.662 

Poly PETG 6763 7-8 24.7 0.520 0.681 
36.5 0.464 0.619 

Cullsan P 8-10 24.7 0.497 0.700 
36.7 0.475 0.658 
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data of fluidization experiments, that is, back calculation from Ergun 

equation using the pressure drop and velocity for each data point. In 

the other method with the same set of data, a plot of ^ vs. G, was 

drawn and from the intercept of the plot the specific surface of the 

material was calculated. From the slope of the plot,the coefficient 

kg was calculated to compare with coefficient on the second term of the 

Ergun equation 45a. 

Table 16 shows the average sphericities obtained from water 

permeability data (i.e. fixed bed pressure drop data). It also gives 

the number of data points used and the standard deviation of the spher­

icity values obtained. 

Table 16. Average sphericities of the media determined from water 
permeability data 

Avg. No. of 
Material Sphericity Observations Std. Devia 

Brass 35-40 0.930 11 0.011 

Stainless steel 16-18 0.833 11 0.009 

Aluminum 16-18 0.836 16 0.024 

Sand 5-6 0.753 15 0.054 

Sand 6-7 0.772 17 0.043 

MS-20 coal 5-6 0.483 14 0.021 

MS-20 coal 6-7 0.534 14 0.023 

MS-20 coal 7-8 0.533 9 0.028 

MS-20 coal 8-10 " 0.541 10 0.038 

Poly PET 7352 7-8 0.851 10 0.037 

Poly PET 6763 7-8 0.869 10 0.049 
Cullsan P 8-10 0.878 10 0.023 
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Table 17 presents the fixed bed porosity, sphericity determined 

from the air permeability measurements. The table also includes the 

AP sphericity data obtained from the intercept of ^ vs. G plot and the 

coefficient calculated from the slope of plot using the specific 

surface obtained from the intercept. The data are presented for both 

the loosely packed bed and tightly packed bed. The same table also 

gives the average sphericity values calculated by back calculation 

from Ergun equation 45a using the air permeability method. 

AP Figure 30 shows a sample plot of — versus mass flow rate G for 

loosely packed 7-8 mesh MS-20 coal in the air permeability experiment. 

Heywood's volume coefficient Z 

Heywood's volume coefficient Z was calculated for all the material 

used in present research and the materials used in Fan's (45) study. 

The average projected area of the particles when lying in most stable 

position was determined by a image analyzer^. The measurements were 

made by the personnel of the Materials Research Lab of the 

Engineering Research Institute. 

By the image analyzer, the projected areas of at least fifty 

particles were determined. From these measurements, an average area 

was computed for each material. Transparent materials such as Polyester 

PETG 6763 and Cullsan P did not produce a sharp image, therefore had 

to be coated with black paint to produce a sharper image. The volume 

dement Scientific System B-10, 2011, Pine Hall Drive, Science Park 
State College, PA. 16801. Lemont Scientific & Image Analysis - Program 
P -$1641 V 4.1 - IH81A. 
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Table 17. Sphericities of different materials obtained by air permeability method 

Loosely Packed Tightly Packed 
Bed Bed Sphericity from Equation 

ij; and kg from eq. 45b ip and kg from eq. 45b 45a 

Bed Bed Loosely Tightly Fluidizatlon 
Porosity Sphericity Coeff. Porosity Sphericity Coeff. Packed Packed Fixed , 

Material ^ kg ip kg Bed 4 Bed ® Bed Data 

Brass 35-40 0.420 0.877 0.307 0.379 0.895 0.109 0.881 0.876 0.930 

Stainless 
Steel 16-18 0.446 0.797 0.334 0.418 0.795 0.335 0.778 0.779 0.833 

Aluminum 
16-18 0.429 0.857 0,310 0.384 0.875 0.289 0.846 0.876 0.836 

Sand 5-6 0.437 0.808 0.326 0.408 0.800 0.329 0.765 0.755 0.753 

Sand 6-7 0.438 0.734 0.248 0.404 0.774 0.290 0.780 0.773 0.772 

Coal 5-6 0.537 0.607 0.379 0.497 0.579 0.383 0.541 0.517 0.483 

Coal 6-7 0.534 0.575 0.338 0.481 0.625 0.443 0.544 0.531 0.534 

Coal 7-8 0.535 0.664 0.407 0.505 0.688 0.482 0.585 0.559 0.533 

Coal 8-10 0.532 0.724 0.577 0.476 0.584 0.459 0.545 0.506 0.541 

Poly PET 
7352 7-8 0.401 0.905 0.297 0.348 0.765 0.345 0.896 0.718 0.869 

Poly PETG 
6763 7-8 0.445 0.799 0.380 0.398 0.751 0.343 0.721 0.709 0.857 

Cullsan P 
8-10 0.436 0.747 0.270 0.375 0.764 0.335 0.766 0.727 0.878 

^Using air permeability data. 

Using water permeability data. 
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7-8 mesh MS-20 coal in the loosely packed state 
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coefficient Z values are tabulated in Table 18. 

yinîTriTm fluidization velocities 

Figures 31 through 36 show the head loss versus velocity for 

different materials. Table 19 summarizes the minimum fluidization 

velocity u^ obtained experimentally and calculated by equations 74, 

71, 75 and 78. In Table 19, in addition to the material used in the 

present experiment, the materials studied by Fan (4 5), are also 

included. 

In each fluidization experiment, the bed was expanded gradually 

until an expansion about 300 percent was achieved or for heavier 

material maximum flow rate was reached. Then the fluidized bed was 

contracted slowly by closing the valve until fixed bed state was reached 

again. Two minimum fluidization velocities u^, can be determined in 

each experiment, one going from fixed bed state to fluidized state and 

the other going from fluidized state to fixed bed state. There is no 

real advantage in choosing one or the other since the reproducibility 

of these values will depend to some extent on the fixed bed porosities 

for each case. Nevertheless, the two values of u^ do not differ very 

much. In this thesis, the minimum fluidization velocity was determined 

on the expanding curve and u^ was selected as the point where the 

nearly horizontal portion of the pressure drop curve intersected the 

line through increasing pressure drop data points. 
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Table 18. Heyvood's volume coefficient Z 

Avg. Projected Equivalent . Volume 
Area Diameter Spherical Dia. Coefficient 

Material d^ cm dec- ™ 

Brass 35-40 0.04569^ 0.047 1.124 

Stainless Steel 16-18 0.1143^ 0.956 0.306 

Aluminum 16-18 0.1143^ 0.109 0.454 

Sand 5-6 0.4541^ 0.374 0.295 

Sand 6-7 0.4111^ 0.349 0.322 

MS-20 coal 5-6 0.4853^ 0.386 0.264 

MS-20 coal 6-7 0.4146^ 0.316 0.233 

MS-20 coal 7-8 0.3467^ 0.269 0.244 

MS-20 coal 8-10 0.304^ 0.233 0.238 

Poly PET 7352 7-8 0.3461^ 0.308 0.371 

Poly PET 6763 7-8 0.3514^ 0.304 0.339 

Cullsan P 8-10 0.3378^ 0.269 0.264 

Sand 10-12 0.2558^ 0.196 0.236 

Sand 14-16 0.1711^ 0.146. 0.327 

Sand 18-20 0.1125^ 0.100 • 0.374 

Sand 30-35 0.0746^ 0.059 0.270 

US Anthracite 5-6 0.5280^ 0.368 0.177 

US Anthracite 12-14 0.2237^ 0.154 0.171 

Ballotlni 18-22 0.0813^ 0.078 0.468 

Flintag 18-22 0.1129^ 0.078 0.174 

Flintag 25-30 0.0828^ 0.052. 0.134 

U.K. Anthracite 18-22 0.1115^ 0.081 0.204 

U.K. Anthracite 25-30 0.0801^ 0.050 0.131 

diameter of the disc as given by the supplier. 
^Average projected area of the grain's were determined using Lemont 

Scientific Image Analyzer with Program P-^ 1641 V4.1-IH81A. 

^As reported by Fisher (47). 
d 7r - 3 
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Figure 31. Pressure drop versus superficial velocity for 35-40 mesh brass metal punchlngs 
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Figure 32. Pressure drop versus superficial velocity for 16-18 mesh stainless steel 
metal punchlngs 
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Figure 33. Pressure drop versus superficial velocity for 16-18 mesh aluminum metal punchings 
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Figure 34. Pressure drop versus superficial velocity for 5-6 mesh silica sand 
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Table 19. Minimum flulâization velocities observed and calculated 
(cm/sec at 25° C) 

u~ Calculated cm/sec 
mf mt 

Material 
Observed 
cm/sec 

Wen & Yu 
Eq. 74 

Wen & Yu 
Eq. 71 

Bena 
Eq. 75 

Beran 
Eq. 71 

Brass 35-40 1.35 1.05 1.29 0.95 1.13 

Stainless Steel 
16-18 3.00 2.85 3.14 2.75 1.93 

Aluminum 16—18 1.11 1.13 1.28 1.01 1.01 

Sand 5-6 4.30 4.24 4.28 7.65 2.47 

Sand 6-7 4.25 4.01 4.08 6.78 2.45 

MS-20 Coal 5-6 2.14 2.08 2.22 2.72 0.97 

MS-20 coal 6-7 1.91 1.72 1.99 1.95 0.90 

MS-20 coal 7-8 1.69 1.42 1.69 1.49 0.80 

MS-20 coal 8-10 1.36 1.21 1.50 1.18 0.73 

Poly PET 7352 7-8 1.66 1.35 1.27 1.42 1.13 

Poly PETG 6763 7-8 1.17 1.09 1.19 1.10 0.90 

Cullsan P 8-10 0.81 0.74 0.80 0.68 0.61 

Sand 10-12 2.20 2.39 2.18 2.60 1.72 

Sand 14—16 1.60 1.68 1.71 1.59 1.38 

Sand 18-20 0.90 0.96 1.06 0.85 0.88 

Sand 30-35 0.50 0.38 0.47 0.36 0.42 

Anthracite 5-6 2.70 2.56 1.99 3.58 1.10 

Anthracite 6-7 2.40 2.21 1.83 2.73 1.00 

Anthracite 7-8 2.00 2.00 1.67 2.32 0.94 

Anthracite 12-14 1.00 0.88 0.84 0.79 0.52 

Flintag 18-22 0.95 0.61 1.04 0.55 0.50 

Flintag 25-30 0.50 0.29 0.59 0.28 0.29 

Ufi.anthracite 18-22 0.24 0.20 0.37 0.19 0.19 

UJC.anthracite 25-30 0.15 0.08 0.20 0.09 0.09 

sand 18-22 0.70 0.72 0.61 0.64 0.68 

Ballotini 18-22 0.80 0.74 0.95 0.65 0.93 
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Slope and intercept of log u vs log £ graphs 

Figure 37 through 42 show representative curves of log u versus 

log e at 25® C. Table 20 summarizes the *n* values and intercept 

velocity u^ at e = 1 for the different materials determined by re­

gression analysis of the experimental data. Also, u^ values from Table 

14 are repeated here for convenience for comparison with the u^ values. 

All the data points above a bed expansion of ten percent including the 

data for increasing and also decreasing flow rates were used in the 

least square regression calculation to obtainVand u^. Table 20 also 

gives the 'n* value calculated by Richardson and Zaki's equation 81. 

Table 20. *n* slope, u^ from log u versus log e plots at 25° C 

Material n (cm/sec) (cm/sec)^ n> r^% 

Brass 35-40 5.244 89.53 18.49 2.797 98.4 
Stainless Steel 16-18 4.116 7.4.13 22.48 2.555 98.5 
Aluminum 16-18 2.891 14.06 13.80 2.636 99.0 
Sand 5-6 2.306 26.18 27.41 2.400 99.9 
Sand 6-7 2.277 24.83 27.31 2.400 99.9 
MS-20 coal 5-6 2.791 13.30 10.81 2.409 99.9 
MS-20 coal 6-7 2.883 11.97 9.96 2.482 99.9 
MS-20 coal 7-8 2.955 10.79 8.89 2.551 99.9 
MS-20 coal 8-10 3.061 10.00 8.37 2.601 100.0 
Poly PET 7352 7-8 2.325 10.64 12.65 2.408 100.0 
Poly PETG 6763 7-8 2.460 8.53 10.04 2.458 100.0 
Cullsan P 7-8 2.547 6.62 7.52 2.562 100.0 

Repeated here from Table 14. 

Calculated from appropriate equation in equation 81. 
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Figure 41. Log superficial velocity versus log porosity for 5-6 mesh MS-20 coal 
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Analysis 

Equivalent spherical diameter and mean sieve diameter 

The equivalent spherical diameter is always higher than the mean 

sieve diameter (d or d ) except for stainless steel and aluminum 
m gm 

punchings. Most of the material presented in Table 10 show very close 

agreement between equivalent spherical diameter and mean sieve 

diameter. The exceptions are Poly PET 7352, Poly PETG 6763 and Cullsan 

P. These three materials show a difference of about 15 percent between 

deg and d or d 
® m gm 

Settling velocities 

The settling velocities for each material were determined at two 

different temperatures. Table 13 presents the mean settling velocities 

at two different temperatures. By examining this table^one sees that 

the standard deviation of settling time for coal is higher than that 

for any other material. Among the manufactured particles studied, 

Cullsan P showed the highest standard deviation for settling time. 

The deviation of settling time is proportional to the amount of 

particles which are out of specified size range as well as to the 

various shapes of the particle in the sample. Although Polyester PETG 

6763 and C uHilsan P are manufactured particles, the length of the 

particles were not.uniform even after sieving. This may explain why 

even these particles had a moderate standard deviation for settling time. 

Theoretically, the settling velocity should be higher at a higher 

temperature, and the difference in settling velocity should decrease 
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with increasing particle Reynolds number. Polyester 6763 anH 

coal 7-8 showed slightly lower settling velocities at higher 

temperatures, this error is probably due to errors involved in deter­

mining the settling time or because of the range of settling time re­

corded. At higher temperatures,--.all particles except brass 35-40, 

coal 7-8, and coal 8-10, followed a helical path of descent. In this 

case,the actual velocity of the particle along the particle trajectory 

is greater than the value computed by assuming a straight line descent. 

This also could account for any discrepancy in settling velocity 

determined at higher temperatures. 

Table 14 shows the settling velocity adjusted to 25° C. These 

settling velocity adjustments were made by assuming DSF at the temper­

ature of measurement is equal to DSF at 25° C. The settling velocity 

determined near 25° C was used in these calculations- This assumption 

«t "t 
basically boils down to assuming (—) = (—) . This assumption 

"n t°C "N 25° C 

may not be valid over a wide range of temperatures, but for small 

temperature difference, the error involved is small. 

Table 15 shows the DSF and Î2 shape factor for different materials 

at the two temperatures at which settling velocities were determined. 

The variation of DSF and Î2 shape factors at the two temperatures are 

within 5 to 8 percent. Sand 5-6, sand 5-7, and coal 5-6 showed an 

increase in DSF with temperature while the rest showed a decrease in 

DSF with temperature. In case of Î2 shape factor*only brass 35-40 

metal punchings showed an increase with temperature, all the others 

showed a decrease with increasing temperature. Theoretically, as it 
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was shown in the literature review section, as the particle Reynolds 

number increases both DSF and should decrease or remain the same de­

pending on Reynolds number regime. The increase in DSF or 0 with 

temperature observed results from the uncertainties involved in de­

termining the settling velocity accurately. Nevertheless, the variation 

is less than 10 percent for an increase of 10 to 15° C and as it will be 

shown later in this section, such a high precision is not warranted for 

DSF or ïï in the prediction model. Akkoyunlu (2) assumed a linear de­

crease in DSF with increase in particle size for sand and coal. This ap­

proximation is reasonable only if the particle Reynolds number falls 

within a certain range, since both DSF and ^ reach a asymptotic constant 

value at high and low particle Reynolds numbers. Figure 43 reproduced 

from Schulz et al. (95) shows the variation of 1/J2 with Reynolds number. 

Note that the curved lines in this figure represent lines of equal 

shape factor (SF)- This figure shows the lower S.F., the wider the 

Reynolds number range over which 0 changes. 

Sphericity 

For each material, 5 different sphericity values were calculated. 

Four from air permeability measurements and one from fixed bed data of 

the water fluidization experiments. In the air permeability method, 

as shown in Table 17, the sphericity values obtained from the inter-

AP 
cept of ̂  vs. G plot for each material in the loosely packed bed and 

tightly packed, did not differ significantly except for Polyester 

7352 and coal 8-10. Further, the coefficient k^ (based on the slope 

of this plot) is much different from 0.292 proposed in equation 45 for 

different sizes of coal and Polyester 6763. Ergun (42) himself 



www.manaraa.com

c; 

Not«:Lln«: of contionl sliv* 
diometir apply only If 
woltr t(mpcralu*< It 
brtwetfi I2'C(54T1 and 
2(yc(68'F)ondthouklbt 
uted only ftt (itlmoKl. 
Numbers In porinlhitts 
r«f«r 10 Tyler Standard ^ 
Sieve numberti 
di-Sedlmenlallon dl 
omeler of particle—mm 

I 
6 e 10 

H 
VD 
H 

G 8 1# 

Figure A3. The relationship between 1/0 and particle Reynolds number, Re^, at constant 
shape factor S.F. (95) 



www.manaraa.com

192 

suggested this value should be adjusted to 0.48 to yield consistent 

values for sphericities calculated either from the intercept or the 

AP 
slope of vs. G plot for crushed porous solids-

With the limited air permeability data of Table 17, no definite 

conclusion can be reached as to how coefficient should be changed 

for different shaped materials. Nevertheless, it appears advisable to 

AP 
calculate the sphericity from the intercept of — vs. G plot rather than 

the slope since k^ was rather variable. The sphericities obtained 

from the intercept for the loosely packed bed and the tightly packed 

bed show very close agreement for all materials except for Polyester 

PET 7352 and mesh 8-10 MS-20 coal. 

The sphericity obtained by back calculating from the air perme­

ability data using Ergun equation 45a, for the loosely packed bed data 

and the tightly packed bed data show close agreement for all material 

except for Polyester PET 7352. The average sphericity thus obtained 

for each material is not significantly different from the sphericity 

AP 
obtained from the intercept of vs. G for that material. Thus, 

both methods using air permeability data are about equivalent. The 

AP 
first method (intercept of ̂  vs. G) is more amenable to manual 

calculation. 

The sphericities obtained from the fixed bed data of the water 

fluidization experiments are also in close agreement with the values 

obtained from air permeability measurements. The exceptions are Poly­

ester PETG 6763 and Cullsan P. For these materials, the water permeabil­

ity data yield a higher value for sphericity than the air permeability 
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data. 

The sphericities for metal punchings and Polyester PET 7352. 

calculated from the geometric dimension given by the supplier are 

as follows; 

Material Sphericity 

Brass 35-40 0.916 

* Stainless steel 16-18 0.826 

Aluminum 16-18 0.888 

Polyester 7352 (cube) 0.806 

These values indicate that the sphericity values obtained from air 

permeability method or water permeability method are generally within 

5 to 10 percent of the actual value obtained from the geometric 

dimensions. Although no general conclusion can be reached with this 

limited verification it can be said the sphericity values obtained by 

permeability data are not accurate to 3 decimal places. 

fluidization velocities 

The minimum fluidization velocity of each material determined 

experimentally is shown in Table 19. Also shown in Table 19 are the 

minimum fluidization velocities predicted by the Wen and Yu equations, 

71 and 74, Bena et al. (17),equation 75 and Beranek (18) equation 78. 

By far, the most simplistic and easiest to use is equation 74. Except 

for Flintag 18-22, Flintag 25-30 and U.K. anthracite 25-30 (data 

obtained from Cleasby and Fan (32)) u^ predicted by equation 74 are not 

significantly different from that predicted by equation 71. The 

advantage in using 74 compared to equation 71 is that no values of G ^ 
mt 
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and sphericity (ijO are required. For the material presented in Table 

19, Bena et al. (17) equation 75 and Beranek (18) equation 78 are not as 

78 are way off. From Table 19, it is seen that Wen and Yu equation 71 

generally predicts better than equation 74. Eqxiation 74 resulted in a 

few values of u^ at low flow rates which differed substantially from 

the measured values. The better prediction obtained with equation 71 

may be partly due to the fact that the experimental data was used to 

compute the value from the Ergun equation, and the Ergun equation is 

used in development of equation 71. In general, if good values of Tp and 

loose bed are available, equation 71 would be preferred to equation 

Prediction Model Based on Slakes Modified Reynolds Number 

In this section,a prediction model to predict the velocity-voidage 

relationship during liquid fluidization will be developed using the 

modified Reynolds number and a voidage function dependent on the Galileo 

number and porosity of the bed. 

A fluidized bed system is considered to be fully defined by the 

following eight quantities: 

accurate as the Wen and Yu equations for predicting u^g. 

For sand 5-6 and sand 6-7, the u^ predicted by equation 75 and 

74. 

Notation Dimension 

Superficial velocity LT 
-1 

u 

Fluid density ML 
-3 

P 

Fluid viscosity 
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Particle density P, ML 
-3 

s 

Particle specific surface 
(characteristic dimension) S L 

-1 

Voidage o f  the bed e None 

Acceleration due to gravity LT 
-2 

S 

For non-spherical particle, a 
shape factor ipy DSF None 

or 0 

Since there are eight quantities and three dimensions, five 

dimensionless groups may be written. The relationship between these 

groups cannot be inferred and therefore must be found by experiment. 

Five possible dimensionless groups are: 

If a fluidized bed system can be fully described by these eight 

quantities, then a unique relationship can be established by plotting 

the five dimensionless groups. Such a procedure would be very unwieldly 

and attempts must be made to simplify it by choosing fewer non-

dimensional groups. 

As shown in equation 39, the linear dimension is taken as 

and the characteristic velocity is taken as the average interstitial 

S(1 - e) 

velocity 

u = u/e . 
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The modified Reynolds number Re^ = ^ ^ 

Pu 

SU(1 - £) 

To correlate the pressure drop through fixed beds^Blake (20) and 

Carman (27) used the modified Reynolds number Re^ and the following 

voidage function A function based on this <|)^ will be used to 

correlate the fluidization data in this method. 

3 
A2 g -gl 

spu^ 1 - e 
= ̂  . —^ (148) 

In fluidized beds 

Ap 
= (Pg - P) (1 - e)g (149) 

Substituting equation 149 in 148. 

(j), = (p_ - p)(l - e) 
2 * 

Spu 1 — £ 

g(P_ - P) o 
<t>. S £ (150) 

Spu; 

Since and Re^ contain u, it is desirable to define a new 

function A1 which is not a function of u. A1 is defined as follows 

A1 = X Re^^ 

S(P, - p)e^ 

Spu^ sV(l - £)^ 



www.manaraa.com

197 

3 p(p - p)g 

Al 2 f-2 (151) 
(1 - er 

How the functions A1 and Re^ could be used to correlate the fluidization 

data will be considered next. 

Log A1 was plotted against log Re^ for data obtained by different 

investigators including the data obtained during the experimental 

investigations reported herein. Since S appears in both A1 and Re^, a 

suitable definition of S must be selected. For spherical particle, 

S = 1 
d 

where d = diameter of the spheres. 

For non-spherical particles, 3 different shape factors were tried: 

(a) Sphericity 

S = —§ 

d 
eq 

(b) Dynamic shape factor (DSF). 

S = 
DSF.d 

eq 

(c) Hydraulically equivalent diameter shape factor (S2). 

Q  .  à  
eq 

Figure 44 shows the plot of log Al vs. log Re^ for the data 

obtained in the present experiments if the shape factor used Is ip. If 

the model is adequate and if the shape is adequately described by the 

shape factor used, the data for various shaped materials should plot on 

a single line (i.e. the scatter will be minimized). 
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Figure 44. The relationship between log A1 and log for the data of present experiments. 
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However, even for spherical particles, the data show some 

scatter as illustrated by Figure 45- The relative degree of scatter 

in 44 and in subsequent figures can be compared with Figure 45 for a 

visual impression of the adequacy of the shape factor used in each 

figure. 

The fluidization data obtained for metal punchings, brass 35-40, 

and stainless steel 16-18 were omitted in Figure 44 since these data 

plotted far away from the rest of the data. This is probably because 

the fluidization of these two materials was not particulate. The 

criterion used by Davidson and Harrison (36) as given in equation 66 can 

be used to check whether the fluidization of these materials would be 

expected to be particulate or not. 

Brass 35-40: 

2 

4eq O'SSde, ̂ Pg - P^~ ^mf^ 

•" : - =mf 

(18.18)2 r 8.55 _ „ 
0.5 X 981 X 0.0475 8.55 - 0.997 ' 

(1 - 0.426) 

= 17.45. 

If j— > 10 aggregative fluidization is expected, 
eq 

Stainless steel 16-18: 

(22.27)^ r7.78 _ , 
d„„ 0.5 X 981 X 0.0956 ^7.78-0.998 ^ eq 

(1 - 0.0444) 
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log RCj^ 

Figure 45. The relationship between log A1 and log Re^^ for the spherical particle data of 
Loeffler (76) 
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= 13.37. 

Since — > 10 the fluidization is expected to be aggregative. 
eq 

The same criterion will be used to check the fluidization of 

aliTTm'ntnn 16-18, and sand 5-6. 

Aluminum 16-18: 

= (13.76)2 r2.7345 „ 
d 0.5 X 981 X 0.109 (2.7345-0.997) ~ ' ^ 
ea 

(1 - 0.442) 

= 7.18. 

Sand 5-6: 

= (27.4)2 2.646 . 
d^q 0.5 X 981 X 0.3749 ^(2.646 - 0.997) ' 

(1 - 0.455) 

= 8.61. 

Since ̂ — is between 1 and 10 fluidization is in the transitional 
eq 

region i.e., not strictly particulate nor aggregative. 

Figure 45 shows the Loeffler data (76) for spherical particles, 

when plotted log A1 against log Re^. One can see some scatter in the 

data points. This scatter is probably due to high d/D^ ratios, because 

the fluidization was carried out in a column of only 2.6 cm in diameter. 

Figures 46 and 47 show the plot log A1 vs. log Re^ for the present 

experimental data with shape factors DSF and G, respectively. 

Figures 48 through 50 show log A1 vs. log Re^ relationship for Fan's 

data (45) with appropriate shape factors. 
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Figure 51 shows the data of Presler (85) when plotted log Al, 

against log Re^ with ̂  as shape factor. 

Gunasingham et al. (57) did not measure sphericity of the material 

they used in their study. From the original data of Gunasingham, 

obtained from Graham, DSF and Tp were calculated for all the materials. 

Figure 52 and 53 show the data of Gunasingham et al. on the log A1 vs. 

log Re^ plot with DSF and ip as shape factors, respectively. 

Wilhelm and Kwauk (109) claimed all the material s they investigated 

were nearly spherical. From the pressure drop data they reported, 

the sphericity was calculated for each material from the Ergun 

equation 45a. Figure 54 shows the data of Wilhelm and Kwauk in log A1 

vs. log Re^ plot. 

By studying these figures,one notices that generally the 

particles with higher value for shape factor plot above the data for 

lower shape factors. The spread of the points is wider when the 

shape DSF is used in calculation of A1 and Re^. 

Several types of curves were tried to describe the data on a log 

A1 vs. log Re, plot. An equation of the form: 

2 
log A1 = a + b log Re^ + c(log Re^) 4- d log (shape factor) 

(152) 

where shape factor = DSF or was found to yield all coefficients a, 

b, c and d statistically significant with coefficient of determination 

2 
r , around 0.99. 
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In equation 152, in addition to the last term incorporating the 

shape factor explicitly, the term Re^ is also a function of shape 

factor. Therefore, the lines describing différent shape factors are 

not parallel in the log A1 vs. log Re^ plot. 

Table 21 shows the coefficient a, b, c and d obtained for data of 

different investigators. When Table 21 is examined one finds that 

although each experimentors data yielded an equation with a high 

2 
coefficient of determination (r ), the coefficient a, b, c and d are 

different for each set of data. When xl) is used as the shape factor, 

Wilhelm and Kwauk data produced the lowest value for the intercept (a). 

In analyzing Presler's (85) data, since he did not measure his 

equivalent diameter by count and weigh method, the average of passing 

and retaining sieves was used as the diameter for the different size 

fractions of the ores he fluidized. 

Equations obtained for Loeffler's (76) data, Richardson and 

Zaki's (92) data are for spherical particles and any equation for non-

spherical particle should be checked against these equations for effect­

iveness of shape correction factor. However, these equations should 

not be used as absolute standard since for Loeffler's (76) data, the 

d/D^ ratio was high. It is probable that high d/D^ ratios may have 

some influence on the coefficients. 

The equation obtained with the Richardson and Zaki data and the 

equation obtained with the data obtained in the present experiments 

compare reasonably well when the shape factor is 
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Table 21. The values of the coefficients a, b, c and d of equation 152 
for data of different investigators 

Investigator 

Coefficient of 
Determination 

2 

0.7678 0.998 

0.800 0.994 

0.71162 1.03956 0.16572 0.900 

Shape factor = $ 

Present Experiments 0.655 1.157 0.124 

Fan (45) 0.714 1.016 0.153 

Combined data of 
Fan (45) and present 
experiments 

Wilhelm and Kwauk 
(109) 0.552 1.303 0.0767 1.25 

Presler (85) 0.754 1.010 0.131 1.00 

Loeffler (76) 0.608 1.223 0.1099 

Richardson and 
Zaki (92) 0.606 1.128 0.124 

Shape factor = DSF 

Present Experiment 0.3783 1.118 0.182 0.821 

Gimasingham et al.(57) 0.654 0.770 0.395 1.011 

Fan (45) 0.687 0.984 0.182 1.034 

Shape factor = 0 

Present Experiments 0.572 1-1486 0.1225 0.614 

Gunasingham et al.(57) 0.756 0.708 0.370 0.5185 

Fan (45) 0.780 0.973 0.156 0.742 

0.995 

0.995 

0.990 

0.995 

0.992 

0.976 

0.995 

0.994 

0.999 

0.988 

0.992 

Sphericity values obtained from water permeability data were 
used. 

The equations obtained when DSF or 0 is used as the shape factor 

do not agree well with the equations obtained with spherical particles. 

The coefficients obtained for data obtained in the present experiment 

differ significantly from the coefficients for Fan's (45) data or 
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Gunasingham et al. (57) data. As it was pointed out before, DSF and Q 

are not geometric shape factors, and their values,are dependent on the 

particle Reynolds number. This indicates DSF or 5 should not be sub­

stituted for Tp as shape factor in the above approach for analyzing 

fluidization data. 

It will be demonstrated later with Gunasingham et al. data where in­

formation on is not available, by assuming reported tp values for sand, 

coal and polyester, it is possible to predict velocity-voidage relation­

ship reasonably well with equation developed with Jp as shape factor. 

Since Fan's data and the data obtained in the present experiments 

covered a wide range of sphericity values,a combined equation was 

developed from these data. The combined equation is 

log A1 = 0.71162 + 1.03956 log Re^ + 0.16572 (log Re^)^ 

+ 0.900 log (# r^ = 0.995 (153) 

The equation will be used as the prediction equation. 

Since both A1 and Re^ are functions of porosity, the prediction of 

porosity at a given superficial velocity, will be a trial and error 

procedure- To eliminate the need for a trial and error solution, 

design curves such as shown in Figures 55 to 59 have been prepared. 

Each figure is for a particular ip value and includes a family of 

constant porosity lines at £ = 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 

0.72, 0-80, 0.85, and 0-90. Separate figures for ip values of 0.3, 

0.5, 0.7 and 1.0 are presented. The basis of these graphs is as follows. 
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Figure 55. The relationship between Ga and Re at different expanded bed porosity for 
material with ̂  = 0.3 
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Figure 56. The relationship between log Ga and log Re at different expanded bed porosity 
for material with ^ = 0.5 
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Figure 57. The relationship between Ga and Re at different expanded bed porosity 
for material with ̂  = 0.7 
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log Al = log 
P(P_ - P)g(^)^ cP p3 

a 6C| C, 

(6)3 (1 - e)̂  

= log 
P(P= - P)g d 

:i—^ .2 
(6) (1 - £)' 

where 

= log y + log 
(6)3 (1 - e)^ 

log y = log 
P(P= - P)g d 

£9-

y 

pu ipd 
Re^ = 

eq 

6y (1 - £) 

(153a) 

pu d ^ 
log Re^ = log —^ + log 6p—^ 

= log X + log — 
6(1 - e) 

(153b) 

where 

log X = log 
d 

pu eg 

U 

In equation 153, for log A1 and log Re^, equations 153a and 153b 

are substituted. This enables one to draw on the plot of log y versus 

log X constant porosity lines at a selected value of # as shown in 

Figures 55 to 59. 

To use these figures one calculates the ordinate from 

3 

log y = log 
(Pg - P)P g dgq 
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and abscissa from 

pu d 
log X = log (—^j-^) 

and then from the graph of appropriate rp, the expanded bed porosity 

is obtained. 

In addition, the computer program ROOTS, given in Appendix II, is 

written in FORTRAN language to obtain the porosity at a given super­

ficial velocity. The additional information required are density p^, 

equivalent spherical diameter d^^, sphericity xp and the viscosity of 

liquid II. 

The prediction equation is not valid beyond porosity 0.9 because 

in the data used to develop the equation, the expanded bed porosity 

was less than 0.9. Moreover, for porosities beyond 0.9, the fixed bed 

approach used in developing the .functions A1 and Re^ is not valid. 

This is because the system approaches the unhindered settling 

behavior of the particles which is not taken into account in defining 

the modified Reynolds number and function (p^. 

The computer program was used to check the accuracy of the pre­

diction equation 153 by calculating the predicted porosity at the 

superficial velocities at which experimental measurements were made. 

These calculations were made for data of Fan (45), Gunasingham et al. 

(85), Presler (85), Wilhelm and Kwauk (109) and the data obtained in 

the present experiments. 

Figures 59 to 61 show the predicted porosity against actual 

porosity for some of the material studied in the present investigation. 
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Figures 62 and 63 show the actual porosity against predicted porosity 

for two sand sizes and two U.S. anthracite studied by Fan (45). 

Figures 64 and 65 show the relationship between predicted porosity and 

actual porosity for two polystyrene sizes and two uniform sizes of U.K. 

Anthracite data reported by Gunasingham et al. (57). The plots of pre­

dicted porosity against porosity of rest of the material studied in 

the experiments conducted herein and by some other investigators are 

given in Appendix III. For Presler's (85) data the predicted height 

is plotted against the measured height in Appendix III. 

From Table 21 it is seen that the coefficients a, b, c and d show 

some degree of variability even on the equations obtained for sphericial 

particles for Richardson and Zaki's data and Loeffler's data are not 

identical. Therefore, two more equations were developed, one for 

sand and the other for coal using the data obtained in the present 

experiments and the data from Fan (45). The equation obtained with 

sand data is 

log Al = 0.6056 + 1.1585 log Re^ + 0.1452 (log Re^)^ 

4- 1.3 log (# X = 0.9967 (154) 

The equation obtained with coal data is as follows: 

log Al = 0.9815 + 0.9767 log Re^ + 0.1730 (log Re^)^ 

+ 1.389 log (^) = 0.9968 (155) 
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The different values obtained for the coefficients indicate the 

difficulties involved obtaining a satisfactory shape factor to 

describe the behavior of two different shaped materials. These-two 

specific equations should be more accurate for prediction for the 

specific materials. 

Reexamination of Cleasby and Fan (32) Prediction Method 

In the following section,an attempt was made to improve the pre­

diction model proposed by Cleasby and Fan (32). Cleasby and Fan used 

limited data obtained in their experiments to develop their prediction 

model. Table 22 presents the 'n' slope, particle Reynolds number, 

shape factors 5, DSF and ip and d/D^ ratio for different investigators. 

These data will be used to expand the data base for the model 

developed by Cleasby and Fan (32). 

Certain observations have to be made from Table 20 regarding'n' 

and u^ values for some of the materials studied in the present in­

vestigations. Although Polyester 7352, Polyester PETG 6753, and 

Cullsan P had a sphericity of about 0.85, their *n' values are close 

to those predicted by Richardson and Zaki equations for sphericial 

particles. Sand 5-5 and sand 6-7 had 'n* values of about 2.3 which is 

slightly below the value for spherical particle at Re^ greater than 

500. Brass 35-40 and stain!ess steel 16-18 had'n' values which are 

very much higher than those expected for particles with their Re^ and 

sphericity ip. This may be because the fluidization of these two 

materials was not particulate. Further, for sand 5-6, sand 6-7, 
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Polyester PETG 6763 and Cullsan P, the intercept velocity at e = 1 was 

less than the terminal settling velocity at the same temperature. 

Figures 66 and 67 show the b'vs. Re^ relationship with DSF and 

Tp as shape parameters, respectively. On these plots, relationships 

predicted by equations 135 and 136 are also plotted for constant DSF 

or ^ values, neglicting d/D^ ratios. Figure 68 shows the'n'vs. Re^ 

relationship with 0 as the shape parameter. The data points for 

brass 35-40 and stain!ess steel 16-18 have been omitted in Figures 66 

through 68 because their fluidization was not particulate. 

When one examines these figures,one cannot fail to realize that as 

the particle Reynolds number increases,the effect of shape factor on 

V values becomes less significant. It can only be said that equations 

135 and 136 predict the correct trend as shown in these figures. How­

ever, the data points with nearly same DSF or values fall on either 

side of the constant shape factor line predicted by equations 135 and 

136. Wood's (110) data on garnet 14-16 and 25-30 fell well outside the 

predicted curve. Further, when the exponents on DSF, ^ or & were 

calculated as 

° • "spherical =* 

= - "spherical == 

" = "spherical " 

for data points with Re^ < 500, not all the points produced a negative 

value for a, 3 and y as would be expected from equations 135 and 136 

(the values are not presented here). ^spherical approximated as 
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Figure 66. Relationship between 'n' slope and Re^ with DSF as shape parameter. Solid lines 
represent prediction by equation 135. Actual DSF values are shown adjacent to 
the data points 
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Relationship between 'n' slope and Re^ with ijj as shape parameter. Solid lines 
represent prediction by equation 136. Actual values of are shown adjacent 
to the data points 



www.manaraa.com

1.0  

[a 
3 

t 
/O fOO fO,000 

Figure 68. Relationship between 'n' slope and Re^ with 0 as shape parameter. Solid line 
represents prediction by equation 157. Actual values of ^ are shown adjacent 
to the data points 
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Table 22. 'n' slope values for various materials with their corresponding Re^, DSF and ij; values 

Material n **t n DSF d/Dy Ref. 

Brass 35-40 5.244 92.98 0.856 0.704 0.930 0.0047 pvesei 
expts Stainless steel 16-18 4.116 229.22 0.581 0.362 0.833 0.0094 

pvesei 
expts 

Aluminum 16-18 2.891 187.86 0.773 0.563 0.836 0.0107 II 

Sand 5-6 2.306 1105.75 0.548 0.461 0.753 0.0369 II 

Sand 6-7 2.277 1024.37 0.598 0.504 0.772 0.0344 11 

Polyester 6763 7 -8 2.460 338.27 0.717 0.575 0.851 0.0299 II 

Polyester 7352 7-8 2.325 415.15 0.749 0.636 0.869 0.0300 1! 

Cullsan P 8-10 2.547 223.53 0.732 0.543 0.878 0.0264 11 

MS-20 coal 5-6 2.791 413.00 0.431 0.246 0.483 0.0380 It 

MS-20 coal 6-7 2.883 307.15 0.472 0.270 0.534 0.0321 It 

MS-20 coal 7-8 2.955 232.84 0.492 0.272 0.533 0.0265 II 

MS-20 coal 8-10 3.061 191.69 0.511 0.295 0.541 0.0230 11 

U.S. sand 10-12 2.629 420.27 0.627 0.475 0.707 0.0193 (45) 

U.S. sand 14-16 2.998 267.84 0.711 0.535 0.707 0.0144 II 

U.S. sand 18-20 3.169 141.71 0.789 0.582 0.734 0.0099 It 

U.S. sand 30-35 3.384 54.71 0.837 0.676 0.773 0.0059 II 

U.S. anthracite 5-6 2.834 503.00 0.380 0.212 0.319 0.0361 11 

U.S. anthracite 6-7 2.670 387.86 0.402 0.214 0.341 0.0307 II 

U.S. anthracite 7-8 2.808 330.99 0.414 0.218 0.348 0.0278 II 

U.S. anthracite 12-14 3.916 117.97 0.503 0.253 0.396 0.0149 It 

Flintag 18-22 3.801 71.89 0.664 0.421 0.613 0.0150 It 
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Fllntag 25-30 4.049 35.57 0.733 

U.K. anthracite 18 -22 4.380 35.96 0.721 

U.K. anthracite 25 -30 4.498 16.0 0.881 

U .K. sand 18-22 3.212 102.31 0.788 

Ballotlnl 2.931 129.76 1.000 

Garnet 14-16 4.326 260.77 0.711 

Garnet 25-30 4.437 68.01 0.708 

Garnet 50-60 5.197 12.62 0.690 

Sea sand 1 2.826 20.77 0.996 

Sea sand 2 3.056 45.90 0.951 

Scony bead small 2.263 639.67 0.932 

Scony bead large 2.345 1013.60 0.866 

Glass beads 5im 2.359 2174.57 1.000 

Lead shot //12 2.868 648.24 0.883 

Sea sand 3 2.680 122.64 0.794 

Crushed Rock 2.846 219.86 0.746 

Glass beads //7 3.068 35.17 0.930 

U.K. sand 22-25 3.873 65.80 0.749 

U.K. sand 25-30 4.041 50.88 0.801 

Ballotlnl 8-10 2.230 487.88 1.000 

Ballotlnl 14-16 2.429 202.30 0.985 

Ballotlnl 18-22 2.596 83.20 0.930 

Ballotlnl 22-25 2.611 71.94 0.974 

U. K. Anthracite 7-8 3.242 146.80 0.567 

U, K. Anthracite 8-10 3.417 102.75 0.555 

0.497 0.646 0.0101 • (43) 

0.482 0.645 0.0156. II 

0.724 0.752 0.0096 II 

0.605 0.809 0.0163 It 

1.000 0.965 0.0150 II 

0.532 0.703 0.0088 (110) 

0.474 0.595 0.0043 II 

0.382 0.600 0.0018 II 

0.948 0.965 0.0049 (109) 

0.869 0.850 0.0073 tl 

0.884 1.05 0.0430 M 

0.872 0.937 0.0580 It 

1.000 0.983 0.0683 It 

0.820 0.966 0.0168 tt 

0.628 0.921 0.0131 tt 

0.562 0.732 0.0185 tl 

0.841 0.884 0.0067 tl 

0.545 - 0.0060 (57) 

0.617 - 0.0051 , II 

1.000 - 0.0149 It 

0.907 - 0.0092 II 

0.853 - 0.0061 tl 

0.927 - 0.0054 II 

0.332 - 0.0165 It 

0.304 0.0142 tt 
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Table 22. continued 

Material n Re^ ft DSF ijj d/D^ Ref. 

U.K. Anthracite 10-12 3.719 86.88 0.600 0.349 0.0125 (57) 

U.K. Anthracite 14-16 3.795 48.31 0.691 0.459 0.0092 II 

Polystyrene 5-6 3.117 116.47 0.703 0.489 0.0274 II 

Polystyrene 6-7 3.180 92.71 0.657 0.414 0.0249 M 

Polystyrene 7-8 3.301 75.83 0.675 0.436 0.0225 It 

Polystyrene 8-10 3.420 62.33 0.697 0.474 0.0199 II 

Anthrfllt 14-16 4.20 69.09 0.847 0.701 0.0085 (28) 

Anthrafilt 16-18 4.70 51.62 0.884 0.751 0.0072 II 

Anthrafilt 18-20 4.70 34.37 0.882 0.750 0.0059 II 

Phllterkol 14-16 3.70 74.36 0.606 0.352 0.0085 IÎ 

Phllterkol 16-18 4.00 54.00 0.615 0.367 0.0072 It 

Phllterkol 18-20 4.35 45.31 0.628 0.376 0.0066 II 
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'spherical ' ^ 

The d/D^ correction of equation 81 was deemed unnecessary because: 

1. The Re^ values are experimentally determined values in small 

columns comparable in diameter to the fluidization column. 

2. The scatter of data points with equal shape factors in Figures 

66, 67, and 68 suggest that d/D^ correction unnecessarily complicates 

the prediction equation. 

The following equation was obtained when a two variable correlation 

was performed with DSF as shape parameter with 32 data points which 

produced negative values for a. 

a = -3.6475 (DSF)°*"^ r^ = 79.4 % (158) 

The standard deviations of the coefficients are as follows: 

Coefficient Std. Deviation 

3.6475 1.336 

-0.464 0.0765 

0.639 0.186 

The equation to predict^n'will be 

n . 4.4 Re^-O-l CDSf)"*"' (15g) 

Similarly, a two variable correlation was performed with the same 32 

data points that gave negative values for y. 

Y = -9.078 Re^"°'509 (0)1-25 = 83.6 % (160) 
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The standard deviations of the coefficients are as follows: 

Coefficient Std. Deviation 

9.078 1.385 

-0.509 0.089 

1.25 0.340 

The equation to predict'n'using as the shape factor is 

n . 4.4 

Figure 69 shows the variation of *n' with Re^ as predicted by 

equations 135 and 159. From this figure,it is seen that the difference 

in predicted 'n' is not significant except at low Reynolds numbers. 

Figure 70 shows the relationship of 'n' vs. Re^ at 0 = 0.3, 0.5, 

0.7 and 1.0 as obtained from equation 161. In this plot curve 

corresponding to Ù = 0.5,plots above the curve corresponding to = 0.3. 

This apparent contradiction is due to the fact the data used to obtain 

equation 160 did not contain any ÇI values below 0.38. Therefore, extrap­

olation of equation 161 below 5 = 0.38 is likely to cause a error of 

greater magnitude. 

The weakest link in predicting the expansion during fluidization by 

Cleasby and Fan (32) method is the estimation of intercept velocity u.. 

Table 23 presents , Re^, DSF, 0 and ^ as reported by different in­

vestigators or calculated from their data. Figure 71 shows the plot of 

versus DSF and the relationship predicted by equation 137. Figure 72 

^ ^i shows the data of -— against sphericity ijj and relationship predicted by 
*t 

equation 138. 
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n by eruaLion 159 
n by equation 135 

Figure 69. The relationship between 'n' slope and Re at different values of DSF as predicted 
by equation 135 add 1159 
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Figure 70. The relationship between 'n' slope and Re^ at different va1t.:s of as predicted 
by equation 161 
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and the solid line showing the best fit regression for the data presented herein 
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Table 23. — values for various material with their corresponding Re^, 

%DSF and rjj 

Material Ui/Ut *=t 0 DSF Ref. 

16-18 1.018 186.9 0.773 0.563 0.836 Present 

Sand 5-6 0.955 1105.8 0.548 0.461 0.753 Expt. 

Sand 6-7 0.960 1024.4 0.598 0.504 0.772 ?»  

Polyester 7352 7-8 0.841 338.3 0.717 0.575 0.851 It 

Polyester 6763 7-8 0.850 415.2 0.749 0.636 0.869 tt 

Cullsan P 8-10 0.880 223.5 0.732 0.543 0.878 !? 

MS-20 coal 5-6 1.230 413.0 0.431 0.246 0.483 ÎI 

MS-20 coal 6-7 1.200 307.2 0.472 0.270 0.534 It 

MS-20 coal 7-8 1.210 232.8 0.492 0.272 0.533 Tl 

MS-20 coal 8-10 1.190 191.7 0.511 0.295 0.541 

U.S. sand 10-12 0.980 420.3 0.627 0.475 0.707 (45) 

U.S. sand 14-16 1.040 267.8 0.711 0.535 0.707 

U.S. sand 18-20 1.105 141.7 0.789 0.582 0.734 

U.S. sand 30-35 1.060 54.7 0.837 0.676 0.773 

U.S. Anthracite 5-6 1.360 503.0 0.380 0.212 0.319 

U.S. Anthracite 6-7 1.330 387.9 0.401 0.214 0.341 

U.S. Anthracite 7-8 1.340 331.0 0.414 0.218 0.348 

U.S. Anthracite 12-14 1.420 118.0 0.503 0.253 0.396 

Flintag 18-22 1.096 71.9 0.664 0.421 0.613 »t 

Flintag 25-20 1.150 35.5 0.733 0.497 0.646 11 

U.K. Anthracite 
18-22 1.150 36.0 0.721 0.482 0.645 N 

U.K. Anthracite 
Z5-30 1.010 16.0 0.881 0.724 0.752 :T 

U.K. sand 18-22 1.010 102.3 0.788 0-605 0.809 If 

Ballotini 18-22 0.820 129.8 1.000 1.000 0.965 

Garnet 14-16 2.538 260.8 0.711 0.515 0.703 110 

Garnet 25-30 1.640 68.0 0.708 0.520 0.595 110 

Garnet 50-60 1.460 12.6 0.690 0.530 0.600 
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Table 23. continued 

Material Ui/Ut *=t 0 DSF Ref. 

Sea Sand 1 0.849 20.8 0.996 0.948 0.965 (109) 

Sea Sand 2 0.916 45.9 0.951 0.869 0.850 IT 

Scony bead small 0.812 639.7 0.932 0.884 1.050 tt 

Scony bead large 0.855 1013.6 0.866 0.872 0.937 I» 

Glass beads 5 mm 0.864 2174.5 1.000 1.000 0.983 IT 

Lead shot #12 1.090 648.2 0.883 0.820 0.966 1» 

Sea sand 3 0.913 122.6 0.794 0.628 0.921 

Crushed rock 0.953 219.9 0.746 0.562 0.732 

Glass bead 7 mm 0.782 35.2 0.930 0.841 0.884 

Sand 22-25 1.354 65.8 0.749 0.545 - (57) 

Sand 25-30 1.201 50.9 0.801 0.617 -
•• 

Ballotini 8-10 0.568 487.8 1.000 1.00 -
1! 

Ballotini 14-16 0.666 202.3 0.985 0.907 -
TT 

Ballotini 18-22 0.818 83.2 0.930 0.853 -

Ballotini 22-25 0.779 71.9 0.974 0.927 -

U.K. Anthracite 7-8 1.180 146.8 0.567 0.332 -
If 

U.K. Anthracite 8-10 1.300 102.7 0.555 0.304 -
tt 

U.K. Anthracite 
10-12 1.240 86.9 0.600 0.349 _ IÎ 

U.K. Anthracite 
14-16 1.250 48.3 0.691 0.459 _ ÎI 

Polystyrene 5-6 1.100 116.5 0.703 0.489 -

Polystyrene 6-7 1.110 92.7 0.651 0.414 -
: 

Polystyrene 7-8 1.110 75.8 0.675 0.436 -

Polystyrene 8-10 1-110 62.3 0.697 0.474 — 



www.manaraa.com

245 

Figure 73 shows the data of when plotted against S2. Data for 

brass 35-40 and stainless steel 16-18 are omitted from Table 23 and 

Figure 71 through 73. Figures 71 and 73 show considerable scatter of 

data points when u^/u^ is plotted against DSF or In Figure 72,where 

the Uj^/u^ is plotted against ijj the scatter is less but the number of 

data points used are also less. 

An attempt was made to check whether Re^ influenced the value of 

u^/u^ ratio in addition to DSF, ip or Three plots showing the 

relationship between u^/u^ and Re^ with DSF, ^ or Q a shape parameter 

were prepared. But it was not possible to draw any inferences from 

these plots so they are not presented herein. As discussed previously . 

in the literature review section, the intercept velocity u^ is a 

mathematical artifact and as shown in Figure 19 it is not possible to 

obtain a satisfactory relationship even for spherical particles. 

Equations 137 and 138 can be used only as an approximate guide to esti­

mate the u^ values. 

An attempt was also made to develop an equation to predict'n' 

with Heywood's volume coefficient Z as a shape parameter. The exponent 

on Z was calculated as it was done with the other shape parameter 

such as DSF, ^ or 0. 

n = n , _ Z^ 
spherical 

where 

"spherical = ' ̂00 

Z = Heywood's volume coefficient 
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Figure 73. The relationship between u^/u^ ratio and 0 
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a = f(Z, Re^) 

But when a two variable correlation was tried for a against Z and 

2 Re^, the coefficient determination r , was only 26.3 percent and the 

coefficients of the prediction equation were not statistically signifi­

cant from zero. This shows that the Heywood's volume coefficient Z is 

not a satisfactory tool for predicting 'n' slope by the type of model 

employed by Cleasby and Fan (32). 

Garside and Al-Dibouni's Prediction Method 

Table 24 shows the ratio of ^ ratio to attain a specified expanded 

bed porosity for different materials. This table was prepared to check 

whether Garside and Al-Dibouni's (54) approach could be extended to non-

spherical material too. The value predicted for u^^ by equation 112 and 

113 were plotted against the actual measured values for porosities 0.5, 

0.6, 0.7 and 0.8 in Figure 74. The data points fall on either side of 

45 degree line, and at higher porosities such as 0.7 and 0.8, most of the 

points are on the right side of this 45 degree line. This shows that 

Garside and Al-Dibouni approach in its present form cannot be used for 

non-spherical particles. A modification to account for non-sphericity 

of the particles was not attempted because the data available did not 

span from very low Reynolds number to very high Reynolds number at a 

particular shape factor. 

Beranek and Klumpar's Prediction Method 

Beranek and Klumpar (19) suggested that the fluidization data of 

1 - £ spherical and non-spherical data can be correlated by plotting -=—— 
u — u^ mf 

against —jj- in logarithmic coordinates. This method was 
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Table 24. u/u^ ratio to attain a specified expanded bed porosity for 

different materials 

u/u^ 

Material *=t e = 0.5 £ = 0.6 £ = 0.7 £ = 0.8 Ref. 

Silica sand 5-6 1150.8 0.1961 0.3032 0.4200 0.5691 Present 

Silica sand 6-7 1069.6 0.1893 0.2887 0.4020 0.5430 Expt. 

Polyester 7352 7-8 432.6 0.1672 0.2585 0.3684 0.4986 ft 

Polyester 6763 7-8 346.1 0.1543 0.2431 0.3543 0.4886 Tt 

Cullsan B 8-10 226.7 0.1495 0.2435 0.3568 0.4964 

MS-20 coal 5-6 468.2 - 0.2887 0.4581 0.6533 ?» 

MS-20 coal 6-7 353.5 - 0.2690 0.4352 0.6269 It 

MS—20 coal 7—8 260.1 - 0.2630 0.4241 0.6274 If 

MS-20 coal 8-10 219.4 - 0.2435 0.4058 0.6078 I* 

Aluminum 16-18 166.8 0.1386 0.2319 0.3548 0.5354 

U.S. sand 10-12 420.0 0.1580 0.2552 0.3827 0.5248 (45) 

U.S. sand 14-16 266.0 0.1301 0.2248 0.3569 0.5326 tt 

U.S. sand 18-20 143.0 0.1228 0.2189 0.3565 0.5447 tt 

U.S. sand 30-35 54.7 0.1019 0.1890 0.3184 0.5000 It 

U.S. Anthracite 5-6 503.0 - 0.3200 0.4961 0.7243 

U.S. Anthracite 6-7 388.0 - 0.3403 0.5136 0.7335 

U.S. Anthracite 7-8 331.0 - 0.3188 0.4916 0.7153 It 

U.S. Anthracite 12-14 118.0 - 0.1927 0.3524 0.5945 ft 

Flintag 18-22 71-5 - 0.1730 0.3108 0.5163 tt 

Flintag 25-30 35.3 - 0.1456 0.2720 0.4670 11 

U.K. Anthracite 
18-22 35-7 _ 0.1235 0.2427 0.4345 tt 

U.K. Anthracite 
25-30 15.9 0.1014 0.2032 0.3703 tt 

U.K. sand 18-22 101.7 0.1093 0.1964 0.3221 0.4947 tt 

Ballotini 18-22 129.0 0.1077 0.1838 0.2888 0.4272 tt 

Ballotini 14-16 202.1 0.1242 0.1895 - - (57) 

Ballotini 18-22 83.1 0.1377 0.2175 0.3238 -
If 

Ballotini 22-25 71.9 0.1272 0.2053 0.3074 -
ft 

U.K. Anthracite 7-8 144.7 0.2193 0.3740 — 
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Table 24. continued 

u/u^ 

Material Re^ £ = 0.5 e = 0.6 e = 0.7 e = 0.8 Réf. 

U.K. Anthracite 
8-10 102.6 - 0.2266 0.3886 - (57) 

U.K. Anthracite 
10-12 86.8 - 0.1813 0.3385 

U.K. Anthracite 
14-16 48.3 - 0.1786 0.3231 

Polystyrene 5-6 116.3 - 0.2100 0.3310 -

Polystyrene 6-7 92.6 - 0.2200 0.3620 -

Polystyrene 7-8 75.7 - 0.2059 0.3457 -

Polystyrene 8-10 62.2 - 0.1925 0.3324 -

U.K. sand 22-25 65.8 0.0924 0.1874 

U.K. sand 25-30 50.9 0.0750 0.1533 
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tried for data obtained in the present experiments and Fan's data.(45), 

1 - £  ̂ - ĵjjf 
Figure 75 shows the plot of ^ ^— vs. — . is replaced by 

^ 1 — £ the intercept velocity in Figure 76 and ^ ^— was plotted against 
u - mf 
— . The scatter of data points in Figure 76 is considerably less 

compared to that in Figure 75. In both the plots, generally, data 

with higher values of sphericity, Tp plotted above the points with 

lower sphericity. However, because of the difficulties involved in 

predicting u^ and u^ accurately, this method may not find much 

acceptance among design engineers. 

Comments on Various Prediction Models 

The author of this dissertation believes that the prediction 

equation 153 will serve as an alternative method to predict the velocity-

voidage relationship of particulately fluidized systems. The author's 

method offers an advantage in that it does not require the terminal 

settling velocity of the material to predict the velocity-voidage 

relationship. The calculation of terminal settling velocity of non-

spherical particle is rather tedious and cumbersome. 

The method proposed by Cleasby and Fan requires the terminal 

settling velocity of the particle to predict the velocity-voidage 

relationship. They propose that the terminal settling velocity u^ can 

be obtained by knowing the DSF of the material. However, as 

demonstrated herein, the DSF for a material changes with the particle 

Reynolds number. The practice of calculating the DSF from the 

sphericity is not recommended because DSF does not bear any fixed • 
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relationship to the geometric shape factor. Therefore, calculating 

DSF from measured sphericity and obtaining the terminal settling 

velocity from DSF is rather unsound practice. Further, it was shown 

that the intercept velocity u^ cannot be predicted accurately for 

spherical or non-spherical particles. The prediction accuracy of 

velocity-voidage relationship by Cleasby and Fan method is also 

dependent upon an accurate estimation u^. They present an empirical 

relationship between u^, DSF and u^ to predict u^ which is a weak re­

lationship as shown in Figure 71. Both of these foregoing difficulties 

will be reflected in the prediction accuracy of the velocity-voidage 

relationship. 

Both the author's method and Cleasby and Fan's method were found 

to be unsatisfactory for heavier material such as garnet sand, brass 

metal punchings or stainless steel metal punchings. This is probably 

because the fluidization of these materials was not particulate. At 

present, no satisfactory model is available to predict the expansion 

data for materials which exhibit aggregative fluidization behavior. 

Until a satisfactory model is developed to predict the expansion data of 

garnet sand, the method proposed by Wood (110) could be used. 
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CONCLUSIONS AND RECOMMENDATIONS 

A model to predict the expansion data of particulately 

fluidized non-spherical materials was developed in this study. In 

addition, certain fundamental questions regarding settling velocity, 

shape factors based on settling velocity and different permeability 

methods of determining sphericity were also studied. The conclusions 

of this study are as follows: 

1. Theoretically it was shown that hydraulic shape factors such as 

DSF and shape factors do not bear any relationship to geometric shape 

factors since both of these hydraulic shape factors are functions of 

Reynolds number. Any agreement between xjj and 0 is merely coincidental. 

However, this does not suggest that use of DSF or 0 as a shape factor 

in prediction models is inappropriate or unsatisfactory. Rather, it 

alludes to the fact that these two shape factors may change with 

particle size or temperature depending on the Reynolds number region, 

even though the material has a consistent geometric shape. 

2. The sphericity values obtained for a loosely packed bed and 

tightly packed bed using an air permeability method were not very much 

AP different. But the sphericities obtained from the intercept of — 

versus mass flow rate (equation 45b) and from back calculations from 

Ergun equation 45a did show some variability. This variation is due to 

variation of coefficient k^ from 0.292, the value used in the Ergun 

equation. 

The sphericities obtained from water permeability experiments 

were not significantly different from sphericities obtained from air 
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permeability data for most of the materials. Therefore, the air 

permeability can be used to obtain the sphericity needed in the 

prediction equation. The air permeability method is favored because 

the equipment is small and only a small sample volume is needed. 

3. The Wen and Yu equations, number 71 and 74, for predicting 

minimum fluidization velocity were found to be very satisfactory to 

predict the minimum fluidization velocities of the materials studied 

herein. Equation 71 is somewhat superior but equation 74 is 

advantageous because it does not require a value of porosity or 

sphericity for calculation. 

The following conclusions relate to several models available for 

prediction of the velocity-voidage relationship for non-spherical 

materials. 

4. The equation developed herein, which involves plotting 

g3 p(Pg - p)g Pu 

(1 _ e)2- g3 y2 log ^ ̂  for different non-

spherical materials provides an alternative approach to predict the 

velocity-voidage relationship of particulately fluidized systems. The 

prediction equation is 

log A1 = 0.71162 + 1.03956 log Re^ + 0.16572 (log Re^)^ 

+ 0.9 log (# (153) 

This relationship is to be used only when the expanded bed porosity is 

below 0.9. Sphericity was found to the most satisfactory shape 

factor for this method of prediction. This method does not require the 

unhindered settling velocity of the material to predict the expansion. 
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5. The *n' slope of non-spherical materials can be predicted 

reasonably well by the equations proposed by Cleasby and Fan 

(equations 135 and 136). However, the intercept velocity u^, shows 

considerable scatter from the relationship proposed by them (equation 

137). 

6. Garside and Al-Dibouni's logistic equations cannot be used 

in their present form to predict the expansion data of non-spherical 

particles. 

le ^ - u^ 
7. A plot of ^ _ 2— versus — to correlate the fluidization 

mf i 
data as suggested by Beranek and Klumper, shows some degree of promise 

as a predictive tool. However, the scatter of data points from a mean 

line is too high for an accurate prediction to be obtained. Further­

more, the need for values of u. and u _ detract from this model. 
1 mf 

Recommendation for future work include the following: 

The present expansion models for non-spherical particles are not 

satisfactory for predicting expansions at very high porosities (£ < 0.9). 

Garside and Al-Dibounis logistic approach is more accurate for 

predicting expansion at very high porosities. Therefore, it would be 

advantageous if a model similar to the logistic model proposed by 

them is developed for non-spherical materials. In order to do this, 

fluidization data are required from very low particle Reynolds number 

to very high particle Reynolds number for a material of particular shape. 

It would be advantageous to use manufactured particles of known shape, 

since it would eliminate the variability in particle shape with size 
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fraction typically observed for natural materials such as coal. This 

method of prediction needs no knowledge of intercept velocity u^; 

therefore, any inaccuracies that result from poor estimation of u^ will 

also be eliminated. 
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APPENDIX I 

2 
The algorithims used to. describe Re^ vs. Re^ ̂ d C^/Re^ vs. 

Re^ plot for spherical particles. 

yi = s = i 8 4q p(Ps -

4g(p^ - p)]i 
y, = ® 
^ ^ 3p2 u/ 

RENl = P u^.d^q/W . 

REN2 = p.u^.dj^/u . 

(a) To obtain 

IF(Y1.LE.12.4) RENl = Yl/24 
IF((Y1.LE.26.5).AND.(Y1.GT.12.4)) RENI = 0.05023*Y1**0.9127 
IF((Y1.LE.94).AND.(Y1.GT.26.5)) RENl = 0.0578*Y1**0.86987 
IF((Y1.LE.410).AND.(Yl.GT.94)) RENl = 0.07393*Y1**0.8157 
IF((Y1.LE.1000).AND.(Yl.GT.410)) RENl = 0.093*Y1**0.7743 
IF((Yl.LE.3700).AND.(Yl.GT.1000)) RENl = 0.1585*Y1**0.70035 
IF((Y1.LE.10000).AND.(Yl.GT.3700)) RENl = 0.228*Y1**0.5561 
IF((Y1.LE.40000).AND.(Yl.GT.10000)) RENl = 0.25*Y1**0.648 
IF((Y1.LE.400000).AND.(Yl.GT.40000)) RENl = 0.464*Y1**0.5897 
IF(Yl.GT.400000) RENl = SQRT (Yl/0.44) 

(b) To obtain 

IF(Y2.GT.99) REN2 = SQRT(24/Y2) 
IF((Y2.LE.99).AND.(Y2.GT.26.5)) REN2 = 5.6042*Y2**-0.52592 
IF((Y2.LE.26.5).AND.(Y2.GT.3.4667)) REN2 = 5.8715*Y2**-0.54014 
IF((Y2.LE.3.4667).AND.(Y2.GT.1.38)) REN2 = 5.97783*Y2**-0.55458 
IF((Y2.LE.1.38).AND.(Y2.GT.0.41)) REN2 = 6.00975*Y2**-0.57111 
IF((Y2.LE.0.41).AND.(Y2.GT.0.0667)) REN2 = 5.83186*Y2**-0.6048 
IF((Y2.LE.0.0667).AND.(Y2.GT.0.03)) REN2 = 5.30574*Y2**-0.63976 
IF((Y2.LE.O.03).AND.(Y2.GT.0.0107)) REN2 = 4.732427*Y2**-0.67233 
IF((Y2.LE.0.0107).AND.(Y2.GT.0.002167)) REN2 = 4.40975*Y2**-0.6879 
IF((Y2.LE.9.002167).AND.(Y2.GT.0.0011))) REN2 = 2.94761*Y2**-0.75356 
IF((Y2.LE.0.00il).AND.(Y2.GT.0.00046)) REN2 = 2.22207*Y288-0.79504 
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APPENDIX II 

ICQ C ' THIS PROGRAM CALCULATES THE POROSITY AT A GIVEN SUPERFICIAL 
200 C VELOCITY USING THE COMBINED EQUATION OF 
300 CHAKACTER*30 TITLE 
400 COMMON RHO, RHOS,S,XMa, PSI,G 
500 REAL LEFT, RIGHT, EPS ,M 
600 LEFT = 0.40 
700 RIGHT =1.0 
800 EPS = 0.005 
850 • G = 32.17 
900 10 READ(5,11) TITLE 
1000 11 FORMAT (A30) 
1100 WRITE(6.12) TITLE 
1200 12 FORMAT('0',20X,A30) 
1210 WRITE(6,14) 
1220 14 FORMATCO','U(CM/S)T12,'ACTUAL',T24, 'PREDICTED'/ 
1230 + T12,'POROSITY",T24,'POROSITY') 
1300 READ(5,*) RHOS,RHO,DEQ,PSI,EO,XMU,DOD,DSF,PSI1 
1400 S=6/(PSI*DEQ) 

1500 15 READ(5,*)U,EA,REO, K, 1 
1600 CALL SOLVE(LEFT,RIGHT,E,EPS,U) 
1700 20 WRITE(6,40) U,EA,E 
1800 40 FORMAT('0',F8.3,5X,2(F6.3,3X)) 
1900 IF(K-1)15,50,15 
2000 50 IF(L-1)10,60,10 
2100 60 CONTINUE 
2200 CALL EXIT 
2300 END 
2400 SUBROUTINE SOLVE (LEFT,RIGHT,ROOT,EPS,B) 
2500 COMMON RHO,RHOS,S,XMU,PSI,G 
2600 REAL LEFT, RIGHT, ROOT, EPS 
2700 REAL X1,X2,F1 
2800 FDNC(X,B)=A10G10(X**3*(RHOS-RHO)*RHO*G/(1-X)**2/S**3/XMn**2) 
2900 1-0,71162-1.03956*A10810(R*EH0/(S*XMU*(1-X))) 
3000 2-0,165/7*(ALOGIO(R*RH0/(S*XMU*(1-X))))**2 
3100 3-0.89895*AL0610(PSI) 
3200 X1=LEFT 
3300 X2=RIGHT 
3400 F1=FDNC(X1,B) 
3500 ROOT=(X1+X2)/2.0 
3600 5 IF((R00T-XL).LE.EPS) GO TO 10 
3700 IF(F1*FUNC(ROOT,B).GT.0.0) THEN 
3800 XL=ROOT 
3900 ELSE 
4000 X2=ROOT 
4100 END IF 
4200 ROOT=(Xl+X2)/2.0 
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4300 GO TO 5 
4400 10 CONTINUE 
4500 RETURN 
4600 END 
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APPENDIX III 

Plots of Predicted Porosity Versus Actual Porosity 

for the Data of Various Investigators 
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